considered in this report (2035–2050) or later. However, it is very likely that some of the potential breakthrough technologies that are indeed visible on today’s horizon—for example, superconducting materials, second- and third-generation PV technologies, and advanced batteries—may begin to develop and have an important influence on technology trends during the first two time periods (2008–2020 and 2020–2035) considered in this study. Achieving such breakthroughs will require sustained federal support for basic scientific research, both in the physical and in the biological sciences, and private-sector “venture-backed” support for early-stage energy R&D.

The Department of Energy (DOE) has been the primary catalyst for basic energy research in the United States, primarily through its Office of Science. There are substantial opportunities in the years ahead for this office to increase the support of such activities and to ensure their coordination by partnering with the DOE’s energy offices and with other basic-research agencies such as the National Science Foundation.

FINDING 8:
BARRIERS TO ACCELERATED TECHNOLOGY DEPLOYMENT

A number of current barriers are likely to delay or even prevent the accelerated deployment of the energy-supply and end-use technologies described in this report. Policy and regulatory actions, as well as other incentives, will be required to overcome these barriers.


The assessments provided in the forgoing sections reflect the AEF Committee’s judgments about the potential contribution of new energy technologies if the accelerated-deployment options identified in this report are actively pursued. However, a number of potential barriers could influence these options and, in turn, affect the actual scale and pace of the implementation of the technologies. Some of the barriers are purely market driven: technologies must be clearly attractive to potential investors, purchasers, and users. They must also provide improvements, relative to existing technologies, in terms of performance, convenience, and cost attributes; of course, they must also meet relevant performance standards and regulations.

In the course of this study, the AEF Committee identified several policy and regulatory barriers to the deployment of the energy-supply and end-use technologies that were examined. Some of these barriers have already been identified in



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement