National Academies Press: OpenBook

NASA Aeronautics Research: An Assessment (2008)

Chapter: Appendix B: Biographies of Committee Members

« Previous: Appendix A: Statement of Task
Suggested Citation:"Appendix B: Biographies of Committee Members." National Research Council. 2008. NASA Aeronautics Research: An Assessment. Washington, DC: The National Academies Press. doi: 10.17226/12182.
×
Page 95
Suggested Citation:"Appendix B: Biographies of Committee Members." National Research Council. 2008. NASA Aeronautics Research: An Assessment. Washington, DC: The National Academies Press. doi: 10.17226/12182.
×
Page 96
Suggested Citation:"Appendix B: Biographies of Committee Members." National Research Council. 2008. NASA Aeronautics Research: An Assessment. Washington, DC: The National Academies Press. doi: 10.17226/12182.
×
Page 97
Suggested Citation:"Appendix B: Biographies of Committee Members." National Research Council. 2008. NASA Aeronautics Research: An Assessment. Washington, DC: The National Academies Press. doi: 10.17226/12182.
×
Page 98
Suggested Citation:"Appendix B: Biographies of Committee Members." National Research Council. 2008. NASA Aeronautics Research: An Assessment. Washington, DC: The National Academies Press. doi: 10.17226/12182.
×
Page 99
Suggested Citation:"Appendix B: Biographies of Committee Members." National Research Council. 2008. NASA Aeronautics Research: An Assessment. Washington, DC: The National Academies Press. doi: 10.17226/12182.
×
Page 100

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Appendix B Biographies of Committee Members CARL J. MEADE, Co-chair, is director of the Lunar Lander Program and director of Space Systems at Northrop Grumman Integrated Systems. He and his team are responsible for both government and civil projects relating to crewed spaceflight and nonpayload military space vehicles. He was previously employed at Lockheed Martin Aeronautics Company (a.k.a. the Skunk Works) in Palmdale, California, where he directed the development of various advanced aerospace vehicles, including the X-33. Mr. Meade is a former Air Force fighter and experimental test pilot and NASA astronaut, having complete three space shuttle flights. He has particular expertise in risk/benefit analysis and decision making, modeling and simulation, signal processing, flying qualities, human factors, and avionics. DONALD W. RICHARDSON, Co-chair, retired in 2005 as the vice president of Science Applications Inter­national Corporation responsible for all Federal Aviation Administration (FAA) and civil aviation corporate activities. He is a fellow and past president of the American Institute of Aeronautics and Astro- nautics (AIAA), of which he has been a member for 58 years. He is also a fellow of the Royal Aeronau- tical Society and served on its Engineering Council. He was awarded the NASA Public Service Medal in 2002 for his work in reinvigorating U.S. federal funding for aeronautics research and development (R&D). He holds bachelor’s, master’s and Ph.D. degrees in aeronautical and mechanical engineering. A commercial instrument pilot with multiengine land and seaplane ratings, Dr. Richardson has been an active pilot for 59 years. His engineering career has included assignments as an aerodynamics and flight-test engineer, research pilot, and engineering manager. RICHARD ABBOTT is a technical fellow emeritus at Lockheed Martin Aeronautics Company in Palmdale, ­California. He received a Ph.D. in chemical physics from Northern Illinois University, where his research concentrated on cooperative phenomena in molecular systems. He continued studies as a research associate in statistical mechanics at the University of Chicago’s James Franck Institute, where he contributed to theories of energy relaxation in condensed media using Monte Carlo and molecular dynamics techniques. Dr. Abbott’s aerospace career includes more than 25 years of experience in the areas of guidance, navigation, and control systems design and analysis; sensor data fusion design; and 95

96 NASA AERONAUTICS RESEARCH—AN ASSESSMENT sensor system simulation and modeling for both manned and unmanned aircraft. He has supervised the development and execution of large-scale simulations of complex air vehicles, led the development of the avionics functional architecture for the demonstration and validation phase of the YF-22 program, and developed fault-detection and redundancy-management algorithms for navigation systems aboard the X-33 single-stage-to-orbit vehicle. He also has served as principal investigator for the Defense Advanced Research Projects Agency (DARPA) software-enabled control technologies for reliable autonomous control project and has been the co-chair for the Technologies for Autonomous Control session of the IEEE Aerospace Conferences. MEYER J. (MIKE) BENZAKEIN (NAE) is the chair of the Aerospace Engineering Department at Ohio State University. Dr. Benzakein began his professional career at General Electric in 1967, where he sub- sequently served in a number of positions in advanced technology and project and product engineering. He led the CFM56 Engineering Program from 1984 to 1993 and the GE90 Engineering Program from 1993 to February 1995. Dr. Benzakein in February 1995 became general manager for engine systems design and integration, and in this capacity he had the responsibility for engineering leadership and technical oversight of GE Evendale Commercial and Military Aircraft Engines. In January 1996, Dr. Benzakein took over the position of general manager, advanced engineering. He was responsible for leading technology development and certification/qualification of new engine products. His charter is to ensure that the customer expectations as well as the needs of GE Aircraft Engines (GEAE) Multi­ generation Product Plans are met. Dr. Benzakein is responsible for GEAE front-end ­initiatives in driving technology matura­tion, strengthening the linkage between preliminary design, engine systems design, and production hardware design. He was elected a member of the National Academy of Engineering in 2001. That year he received the Gold Medal Award from the Royal Aeronautical Society. He is a fellow of the Royal Aeronautical Society and the American Society of Mechanical Engineers, and he is the 2007 recipient of the AIAA’s Reed Aeronautics Award, which is the highest honor that the AIAA bestows for achievements in aeronautical science and engineering. JOHN T. (TOM) BEST is the director of the Capabilities Integration Directorate at the Air Force’s Arnold Engineering Development Center (AEDC), which contains the largest complex of ground aerospace test facilities in the world. AEDC provides developmental testing of propulsion, aircraft, missile, and space systems for the U.S. government, industry, and foreign governments. Mr. Best is responsible for capabilities assessment and planning, technology development and transfer, and intelligence integration. Mr. Best also acts as the AEDC leader for NASA/Department of Defense (DoD) collaboration under the National Partnership for Aeronautical Testing (NPAT). Mr. Best served in the past as head of the Long Range Requirements and Facility Planning Branch, the chief of the Applied Technology Division, and deputy director of the 704th Test Group. He also served for one-and-a-half years as a staff specialist in the Office of the Deputy Director for Defense Research and Engineering (Test and Evaluation) in Wash- ington D.C., overseeing the work of the DoD’s Major Range and Test Facility Base. Currently, he also serves as the technical project officer for a data exchange agreement on wind tunnels with Germany. IAIN D. BOYD is a professor of aerospace engineering at the University of Michigan. He leads a research group that develops and applies physical models and numerical methods for the simulation of nonequilibrium gas flows and plasmas. Current application areas include electric propulsion for spacecraft, hypersonic aerothermodynamics, and flows involving microelectromechanical systems, and deposition of thin films for advanced materials. After receiving a Ph.D. in aeronautics and astronau- tics from the University of Southampton, England, Dr. Boyd was a research scientist at NASA Ames

APPENDIX B 97 Research Center for 4 years. He was subsequently an associate professor of mechanical and aerospace engineering at Cornell University, before joining the faculty of the University of Michigan in 1999. Dr. Boyd received the AIAA Lawrence Sperry Award in 1998, and he is an associate editor of the AIAA Journal of Spacecraft and Rockets. He has authored more than 300 research papers. AMY L. BUHRIG is director of technology for Boeing Commercial Airplanes. She is responsible for leading the definition of technology required to enable future products and services, while ensuring that the company’s investments are aligned with business unit strategy and industry economics. Integral to these responsibilities is working with organizations to develop the skills, processes, and tools necessary to enable the application of future technologies. Ms. Buhrig is also the primary interface between Boeing Commercial Airplanes and Phantom Works, the company’s R&D organization, to maximize the value derived from the company’s R&D activities. Ms. Buhrig has also worked at the Phantom Works, most recently leading a team to define the strategy for the Structural Technologies, Prototyping, and Quality organization. Other Phantom Works assignments included understanding enterprise-wide technology needs in order to leverage venture capital investments, and pursuing R&D contracts for the Mathematics and Computing Technology organization. The first 20 years of her career were spent in Boeing Integrated Defense Systems. She performed studies to quantify the benefit of investing in novel design methods for the Boeing 777 and F-22 aircraft and assessed company strengths applicable to the commercial space market, and she was vice president of marketing and sales for Boeing’s Sea Launch Company. DAVID E. (ED) CROW (NAE) joined the Department of Mechanical Engineering at the University of Connecticut as a distinguished professor-in-residence in 2002, following a long career with Pratt & Whitney, where he rose to the position of senior vice president for the Engineering organization. As such, he was responsible for the design, development, validation, and certification of all Pratt & Whitney large commercial engines, military engines, and rocket products. He also led the research and development of advanced technologies systems to meet future aircraft requirements. Dr. Crow also served as senior vice president for the Large Commercial Engines organization, which included the PW4000 and JT9D high-thrust family of products. He was elected a member of the National Academy of Engineering for his leadership in the engineering design of high-bypass-ratio gas turbine aircraft engines. FRANK L. FRISBIE is vice president of strategic planning at Apptis, Inc. He was a longtime former senior executive with the Department of Defense and the Federal Aviation Administration and more recently vice president and senior client executive for civil aviation with Northrop Grumman Informa- tion Technology. He joined the FAA in 1958, where he held a variety of positions. In his last two FAA posts, he was directly responsible for research, development, system engineering, acquisition, deploy- ment, and maintenance of all 20,000 air traffic control facilities in the United States. Mr. Frisbie was awarded the prestigious Glen A. Gilbert Memorial Award in 2002 by the Air Traffic Control Associa- tion for his longstanding contributions to the air traffic control and civil aviation communities. He has been involved with the development, deployment, maintenance, and operation of virtually every system employed in the U.S. civil aviation infrastructure. He is currently a member of the board of governors for the Center for Unmanned Air Systems Integration in the National Airspace System. He earned his B.E.E. degree from Manhattan College and his M.B.A. degree from American University. He is a member of the Russian Academy of Navigation and Motion Control, holds a professional engineer’s license, and is a frequent contributor to the Journal of Air Traffic Control, for which he writes on contemporary air traffic management technical and policy issues.

98 NASA AERONAUTICS RESEARCH—AN ASSESSMENT EPHRAHIM GARCIA is an associate professor of mechanical and aerospace engineering at Cornell University, where his interests lie in the development of new types of actuation systems utilizing smart- material transducers, system-level demonstrations of smart structures applied to defense platforms, mor- phing aircraft systems, and bio-inspired intelligent machines. Dr. Garcia served as a program manager in the Defense Sciences Office at DARPA from 1998 to 2002. From 1991 to 1998, he was an assistant and associate professor of mechanical engineering at Vanderbilt University, where he was director of the Center for Intelligent Mechatronics and the Smart Structures Laboratory. In this capacity he directed research in the areas of smart structures, control structure interaction, and bioinspired robotics. From 1991 to 1997, he owned and operated Garman Systems, Inc. (now Dynamic Structures and Materials, LLC), a small engineering corporation that designed and fabricated devices in adaptive structural sys- tems utilizing piezoelectric, electrostrictive, and shape memory alloy materials. Dr. Garcia was named an Office of Naval Research Young Investigator, appointed a 1993 Presidential Faculty Fellow by President Clinton, and received Summer Faculty Fellowship awards from the Air Force on four occa- sions. In 1995, he was named Most Promising Scientist by Hispanic Engineer magazine. In 2002, Dr. Garcia received the American Society of Mechanical Engineers’ (ASME’s) Adaptive Structures Prize for “significant contributions to the sciences and technologies associated with adaptive structures and/or materials systems.” Dr. Garcia is author of more than 175 articles, book chapters, edited volumes, and a textbook entitled Mechanics of Microelectromechanical Systems. He is the chair of the ASME Aero- space Division’s Executive Committee and was recently appointed editor-in-chief of Smart Materials and Structures. PRABHAT HAJELA is a professor of mechanical, aerospace, and nuclear engineering at Rensselaer Polytechnic Institute (RPI). His current research interests include the analysis and design optimization of structural and multi­disciplinary systems, system reliability, emergent computing paradigms for design, artificial intelligence, and machine learning in multidisciplinary analysis and design. Dr. Hajela recently completed a year as an ASME congressional fellow in the office of Senator Conrad Burns, advising on technology policy. Before joining RPI, he was on the faculty at the University of Florida for 7 years. Dr. Hajela is a fellow of the AIAA, the Aeronautical Society of India, and the ASME, and he is vice presi- dent of the International Society of Structural and Multidisciplinary Optimization. He has served on the Multidisciplinary Design Optimization Technical Committee of the AIAA and the executive committee for the ASME Aerospace Division (chair, 2001-2002) and was chair of the Division’s Technical Com- mittee on Structures and Materials (1999-2002). He has served as editor of Evolutionary Optimization and as associate editor of the AIAA Journal, and he is on the editorial board of six other international journals. He has published more than 260 papers and articles in the areas of structural and multidisci- plinary optimization and is an author or coauthor of four books in these areas. Dr. Hajela has an M.S. in mechanical engineering and a Ph.D. in aeronautics and astronautics from Stanford University and a B.Tech. in aeronautical engineering from the Indian Institute of Technology in Kanpur, India. JOHN B. HAYHURST retired in 2004 as senior vice president of The Boeing Company and president of Boeing Air Traffic Management after 33 years at Boeing and 3½ years in these positions. Previously, Mr. Hayhurst was vice president of business development for the Commercial Airplane Services busi- ness unit of Boeing Commercial Airplanes Group (BCAG). Prior to this assignment, he served as vice president and general manager of 737 programs. In addition, he was general manager of the BCAG production site in Renton, Washington. Before that, he served as vice president for the Americas and was responsible for the Boeing business relationships with airline customers in North America and Latin America and for the sale of Boeing commercial airplanes to customers in those regions. Mr. Hayhurst

APPENDIX B 99 joined Boeing in 1969 as a customer support engineer. He held positions of increasing responsibility related to commercial airplanes and in 1987 was promoted to vice president of marketing. In this posi- tion, he played a significant role in the launch of the Boeing 777. Subsequently, he was responsible for leading teams planning the design, development, and manufacture of aircraft larger than the Boeing 747. He then served as vice president-general manager of the Boeing 747-500X/600X program. Mr. Hayhurst is a fellow of the Royal Aeronautical Society and holds a bachelor’s degree in aeronautical engineering from Purdue University. He received a master’s degree in business administration from the University of Washington in 1971. In 1998, Mr. Hayhurst was awarded an honorary doctorate in engineering by Purdue University. NANCY G. LEVESON (NAE) is professor of aeronautics and astronautics and professor of engineering systems at the Massachusetts Institute of Technology. Dr. Leveson conducts research on system safety, software engineering, system engineering, and human–computer interaction. In 1999, she received the Association for Computing Machinery’s (ACM’s) Allen Newell Award for outstanding computer science research and in 1995 the AIAA Information Systems Award for “developing the field of software safety and for promoting responsible software and system engineering practices where life and property are at stake.” In 2004 Dr. Leveson received the ACM Sigsoft Outstanding Research Award. She has published more than 200 research papers and is author of a book, Safeware: System Safety and Computers (Addi- son-Wesley). She has served on numerous National Research Council committees.  ELI RESHOTKO (NAE) graduated from the California Institute of Technology with a Ph.D. in aero- nautics and physics. Dr. Reshotko is currently the Kent H. Smith Professor Emeritus of Engineering at Case Western Reserve University. He was elected to the National Academy of Engineering in 1984 and is a fellow of the following ­societies: AIAA, ASME, the American Physical Society, and the American Academy of Mechanics, which he served as president. He is coauthor of more than 100 publications and is affiliated with many task forces, committees, and governing boards, on several of which he served as chair. His area of expertise is viscous effects in external and internal aerodynamics; two- and three- dimensional compressible boundary layers and heat transfer; stability and transition of viscous flows, both incompressible and compressible; and low-drag technology for aircraft and underwater vehicles. He has expertise in propulsion engineering, thermodynamics, aerodynamics, and aircraft propulsion. RAYMOND (RAY) VALEIKA retired from Delta as senior vice president–technical operations (TechOps). He directed a worldwide maintenance and engineering staff of more than 10,000 professionals, maintain- ing a fleet of nearly 600 aircraft. Currently, he is an independent consultant advising major companies on aviation matters and an internationally recognized senior airline operations executive with more than 40 years of managing the maintenance operations of large airlines. Through Mr. Valeika’s leadership and focus on the continuous improvement of the human processes in aviation maintenance, Delta TechOps consistently rated at the top of the industry for performance benchmarks in the areas of safety, quality, productivity, and reliability. Mr. Valeika was honored with the Air Transport Association’s Nuts and Bolts award, recognizing his leadership in the aviation industry. Finally, his leadership of the human side has been recognized over the years with a Humanitarian Award from the Community Mayors of New York, New Jersey, and Connecticut, and a Laurel award from Aviation Week and Space Technology for his role with human factors training at Continental. In October 1999, Mr. Valeika received the Marvin Whitlock Award from the Society of Automotive Engineers. Most recently, the Aviation Week Group Dr. Leveson resigned from the committee in May 2007.

100 NASA AERONAUTICS RESEARCH—AN ASSESSMENT honored him with a lifetime achievement award. He is currently a member of the National Research Council’s Aeronautics and Space Engineering Board. Previously, he held senior executive positions with Pan Am and Continental Airlines as well as Delta. He graduated from St. Louis University with a degree in aeronautical engineering in 1964.

Next: Appendix C: Validating the Ranking of the Research and Technology Challenges from the Decadal Survey »
NASA Aeronautics Research: An Assessment Get This Book
×
 NASA Aeronautics Research: An Assessment
Buy Paperback | $43.00 Buy Ebook | $34.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

In 2006, the NRC published a Decadal Survey of Civil Aeronautics: Foundation for the Future, which set out six strategic objectives for the next decade of civil aeronautics research and technology. To determine how NASA is implementing the decadal survey, Congress mandated in the National Aeronautics and Space Administration Act of 2005 that the NRC carry out a review of those efforts. Among other things, this report presents an assessment of how well NASA's research portfolio is addressing the recommendations and high priority R&T challenges identified in the Decadal Survey; how well NASA's aeronautic research portfolio is addressing the aeronautics research requirements; and whether the nation will have the skilled workforce and research facilities to meet the first two items.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!