of performing project-designed learning activities. In this case, participants were reflecting on the experience and what they learned, though with no clear emphasis on science.

Among the venues for science learning, out-of-school programs may be the most logical place to seriously pursue learning related to Strand 4. As discussed in Chapter 4, there is strong evidence that many children and adults struggle to understand science as a dynamic process in which knowledge is developed, vetted, and shared through sophisticated social processes. As settings in which participants can develop knowledge over longer periods of time with a common group of peers, out-of-school programs seem well suited to exploration of this important aspect of science learning.

Strand 5:
Engaging in Scientific Practices

Participation in science is a broad construct, which includes doing science, using specialized ways of talking about science, and using scientific tools. In a very general sense, one can point to the vast, expanding scale of out-of-school science programming as a crude estimate of participation in science. Participation in a more nuanced sense—for example, groups that work in an interdependent fashion to make intellectual progress on a complex problem—can be facilitated through specialized social structures that decentralize authority and create multiple ways in which even novice learners can participate. Box 6-3 describes one such program, The Fifth Dimension, which has had tremendous success in supporting learner participation though it is not science-specific.

A few science-specific efforts in out-of-school programs have also focused on participation. For example in the program Critical Science, students developed and implemented a plan to turn an empty lot in New York City into a community garden (Fusco, 2001). Students engaged in activities related to a variety of middle school science performance standards defined by the school system, such as science connections, scientific thinking, scientific tools and technology, and scientific communication. A product-oriented model of assessment similar to portfolio assessment, in which descriptions and artifacts reflecting students’ participation in the program was used as evidence of learning.

In Service at Salado, an after-school science program combining service and learning, middle school students, undergraduate student mentors, and university-based scientists work together to learn about an urban riverbed habitat through classroom lessons and service and learning activities (Saltz, Crocker, and Banks, 2004). This program includes many of the components evident in the successful Fifth Dimension Program described in Box 6-3. In the classroom, students were taught about ecology in an urban setting and also learned about teamwork and leadership. Groups visited a local urban riverbed habitat two or three times during the semester to explore and ap-



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement