sue. In presentations to the committee (Kavlock 2006; Zenick 2006) and recent evaluations of emerging scientific advances (NRC 2006a, 2007a,b), there is the promise of improved capacity for assessing risks posed by new chemicals and risks to sensitive populations that are left unaddressed by current methods. The reach and depth of risk assessment are sure to improve with expanding computer tools, additional biomonitoring data, and new toxicology techniques. But such advances will bring new challenges and an increased need for wisdom and creativity in addressing uncertainty and variability. New guidelines on uncertainty analysis (NRC 2007c) can help enormously in the transition, facilitating the introduction of the new knowledge and techniques into agency assessments.

Characterizing each stage in the risk assessment process—from environmental release to exposure to health effect (Figure 4-1)—poses analytic challenges and includes dimensions of uncertainty and variability. Consider trying to understand the possible dose received by individuals and, on the average, by a population from the application of a pesticide. The extent of release during pesticide application may not be well characterized. Once the pesticide is released, the exposure pathways leading to an individual’s exposure are complex and difficult to understand and model. Some of the released substance may be transformed in the environment to a more or less toxic substance. The resulting overall exposure of the community near where the pesticide is released can vary substantially among individuals by age, geographic location, activity patterns, eating habits, and socioeconomic status. Thus, there can be considerable uncertainty and variability in how much pesticide is received. Those factors make it difficult to establish reliable exposure estimates for use in a risk assessment, and they illustrate how the characterization of exposure with a single number can be misleading. Understanding the dose-response relationship—the relationship between the dose and risk boxes in Figure 4-1—is as complex and similarly involves issues of uncertainty and variability. Quantifying the relationship between chemical exposure and the probability of an adverse health effect is often complicated by the need to extrapolate results from high doses to lower doses relevant to the population of interest and from animal studies to humans. Finally, there are interindividual differences in susceptibility that are often difficult to portray with confidence. Those issues can delay the completion of a risk assessment (for decades in the case of dioxin) or undermine confidence in the public and those who use risk assessments to inform and support their decisions.

Discussions of uncertainty and variability involve specific terminology. To avoid confusion, the committee defines in Box 4-1 key terms as it has used them.

The importance of evaluating uncertainty and variability in risk assessments has long been acknowledged in EPA documents (EPA 1989a, 1992, 1997a,b, 2002a, 2004a, 2006a) and National Research Council reports (NRC 1983, 1994). From the Red Book framework and the committee’s emphasis on the need to consider risk management options in the design of risk assessments (Chapters 3 and 8), it is evident that risk assessors must establish procedures that build confidence in the risk assessment and its results. EPA builds confidence in its risk assessments by ensuring that the assessment process handles uncertainty and variability in ways that are predictable, scientifically defensible, consistent with the agency’s statutory mission, and responsive to the needs of decision-makers (NRC 1994). For example, several environmental statutes speak directly to the issue of protecting susceptible and highly exposed people (EPA 2002a, 2005c, 2006a). EPA has accordingly developed risk-assessment practices for implementing these statutes, although, as noted below and in Chapter 5, the overall treatment of uncertainty and variability in risk assessments can be insufficient. Box 4-2 provides examples of why uncertainty and variability are important to risk assessment.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement