tional properties of the hippocampus by combining experimental studies of fundamental electrophysiological properties of hippocampal neurons and theoretical studies based on nonlinear systems and compartmental analyses, and experimental studies of cellular/molecular mechanisms of synaptic plasticity and the effects of such plasticity on functional dynamics of the hippocampus at the network and systems level. Through collaborations with other CNE faculty, Dr. Berger’s research extends to developing analog VLSI implementations of experimentally based models of hippocampal neurons and neural networks, both for basic research and applications, and developing “neuron–silicon interface” technology using silicon-based, multisite electrode arrays and tissue culture methods for implantation of hardware models into the brain to replace damaged or dysfunctional nerve tissue.

William Bialek, Ph.D., is the John Archibald Wheeler/Battelle Professor in Physics at Princeton University. He is also an associated faculty member in the Department of Molecular Biology, and a member of the multidisciplinary Lewis–Sigler Institute. Professor Bialek participates in the interdepartmental educational programs in Applied and Computational Mathematics, Biophysics, Neuroscience, and Quantitative and Computational Biology. Dr. Bialek attended the University of California, Berkeley, receiving the A.B. (1979) and Ph.D. (1983) degrees in Biophysics. After postdoctoral appointments at the Rijksuniversiteit Groningen in the Netherlands and at the Institute for Theoretical Physics in Santa Barbara, he returned to Berkeley to join the faculty in 1986. He joined the Princeton faculty as a professor of physics in 2001. Professor Bialek’s research interests have covered a wide variety of theoretical problems at the interface of physics and biology, from the dynamics of individual biological molecules to learning and cognition. Best known for contributions to our understanding of coding and computation in the brain, Dr. Bialek and collaborators have shown that aspects of brain function can be described as essentially optimal strategies for adapting to the complex dynamics of the world, making the most of the available signals in the face of fundamental physical constraints and limitations.

Colin Blakemore, Ph.D., studied Medical Sciences in Cambridge University from 1962 to 1965 and completed a Ph.D. in Physiological Optics as a Harkness Fellow at the University of California in 1968. Since 2003 he has been on leave while holding the post of chief executive of the British Medical Research Council. He has maintained research activity at

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement