applications can be replaced with one or more consolidated systems that could serve multiple functions and multiple agencies. One such candidate under consideration by the federal government is a Multifunction Phased Array Radar (MPAR) network, which is envisioned as a network of radar installations with electronically (as opposed to mechanically) steered antennas. This candidate is but one of many discussed in Weather Radar Technology Beyond NEXRAD (NRC, 2002)1, which specifically recommended the exploration of radar systems with agile-beam scanning capabilities.

In 2000, the United States Navy supplied NOAA’s National Severe Storms Laboratory (NSSL) in Norman, Oklahoma, with a phased array antenna. Several agencies contributed funds to construct the National Weather Radar Testbed (NWRT) using this antenna; the NWRT has been collecting data since 2004. It serves as the facility where phased array technology is being tested as part of the federal government’s research and development (R&D) for a possible future MPAR network. However, the MPAR R&D effort includes multiple activities within many additional agencies, including the FAA, the Department of Homeland Security (DHS) and the Department of Defense (DOD). In June 2006, these and other agencies, under the auspices of the Joint Action Group for Phased Array Radar Project (JAG/PARP), Office of the Federal Coordinator for Meteorology (OFCM) and the Federal Committee for Meteorological Services and Supporting Research (FCMSSR), issued a report titled Federal Research and Development Needs and Priorities for Phased Array Radar (OFCM, 2006; hereafter “JAG/PARP report”). The JAG/PARP report summarized federal planning for the MPAR R&D effort, including estimates of costs and benefits of a future MPAR network.

The purpose of the present report is to evaluate the MPAR R&D plans. The JAG/PARP report provides a starting point for this evaluation, but it also incorporates information from a variety of additional sources (see Preface for more details on the evaluation process). In Chapter 2, the evaluation begins with an overview of the existing U.S. civilian radar infrastructure. Chapter 3 outlines the needs for a next generation system of civilian radars. Chapters 4 and 5 describe the capabilities of phased array radar and discuss why and how those capabilities render MPAR a possible candidate for a next generation system. Chapters 6 and 7 summarize and assess the MPAR planning process, as described in more detail in the JAG/PARP report and additional sources of information. Chapter 8 places a potential MPAR network in the context of a broader family of sensing systems. Chapter 9 concludes the report by providing a principal finding and overarching recommendation.

1

This report provides a concise summary of various technical options for a future ground-based system of radars for weather surveillance. These options include phased array technology, polarization diversity, mobile radars, short-range radars, and space-based radars. The reader is referred to various technical documents cited through the present report that provide more detailed technical specifications for each of these options.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement