design review demonstrates the importance of a vibrant base program, including personnel and facilities, that can engage in the scientific issues to be explored at ITER. It is critical that these domestic capabilities be maintained. The overall strategy of the domestic program currently is to develop a predictive understanding of the plasma science associated with magnetically confined plasmas, which the committee believed to be very appropriate to the long-term health of the U.S. fusion program, and specifically to its involvement in the ITER project. The ability to carry out detailed experimental studies of relevant plasma scenarios coupled with theory/simulation provides the framework for progress in this predictive ability, which is best accomplished with a vigorous domestic research program. Longer-term research efforts may well be directed toward reactor design, alternative approaches to magnetic confinement, and materials development in accord with DOE’s strategic plan. However, each of these research areas needs to be based on improved predictive capability.

Finding: Consistent with previous National Research Council and Fusion Energy Sciences Advisory Committee reports, the committee emphasizes that a vigorous and strategically balanced domestic program is required to ensure that U.S. participation in ITER is successful and valuable for the U.S. fusion program.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement