Cover Image

HARDBACK
$74.50



View/Hide Left Panel

After receiving his Sc.D., Alan joined the MIT chemical engineering faculty for the following two years as an assistant professor and worked closely with his senior colleagues W. K. Lewis and E.A. Hauser in the teaching of colloid chemistry. Following a year in industry where he joined a colleague trying to commercialize a new leather tanning process, he was invited to return to MIT as a co-director of the newly organized Soil Stabilization Laboratory (a collaborative activity of the civil and chemical engineering departments). He was promoted to associate professor of chemical engineering in 1956 and to professor in 1961. In 1962, Alan founded Amicon Corporation and went on part-time leave of absence from MIT to organize and build the new company and serve as its president. In 1966, he resigned from the MIT faculty to devote full time to managing the company.

During his 18 years at MIT, Alan played a major role in the development of an intensive teaching and research program in the synthesis, properties, and applications of colloids and polymers. By 1966, this program encompassed six graduate courses and a research team comprising more than 20 predoctoral and postdoctoral students and postdoctoral fellows, whose studies were supported by industrial and government grants. Between 1960 and 1966, the faculty teaching staff associated with this activity increased from two to six. This program brought the MIT chemical engineering department the distinction of being one of the nation’s premier centers of graduate study in polymer science and in the engineering applications of surface and colloidal phenomena.

Alan’s research activities in the course of his tenure at MIT were extensive and diversified and brought him international recognition in a variety of fields. Specifically, his early work on chemical methods of solidifying solids for military highways and airstrips attracted broad interest in the civil and chemical engineering communities. His use of phosphoric acid, chemically modified asphalt and cement, and synthetic resins as soil stabilizers was considered useful and economical in both military and civilian applications. This work also stimulated his interest in the surface and colloidal properties of clays



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement