Cover Image

HARDBACK
$59.00



View/Hide Left Panel

in the Brazilian Amazon. This is the good news. However, it is not clear how many survivors of habitat loss will also survive the novel climates forecast for the Amazon, which include significantly warmer temperatures and more variability in rainfall, accompanied by longer and more severe droughts (Williams et al., 2007). The bad news is that large percentages of rare and endemic species will probably go extinct. The number of rare tree species at risk of extinction from habitat loss could be in the hundreds to several thousand. The actual number at risk is uncertain, because it depends on how many rare species really exist in the Amazon.

There are many caveats to this analysis. A central issue is whether Fisher’s logseries is the correct model of relative tree-species abundance in the Amazon tree metacommunity. This assumption leads to the prediction of high species richness and many rare species and high extinction rates of rare species. In defense of the theory, there is strong support in the data on tree-species abundances across Central Panama (data not presented), and from the abundances of tree genera across Amazonia, that the logseries is the right model.

Another caveat is that the analysis considers only tree-species extinctions and not the potential extinction of other animal and plant (microbial?) species, that are likely to accompany habitat loss. There are also many complex biological interactions in tropical rainforests affecting the survival and reproduction of tropical tree species that might be seriously impacted by forest degradation long before complete deforestation occurs. For example, many tropical trees are bat-pollinated, and their successful reproduction depends on bats. What do we know about the susceptibility of bat communities to forest fragmentation?

Another issue is that the calculation of the number of tree species at risk also depends on how individual species will respond to different levels of forest disturbance and conversion. This unknown is undoubtedly the most challenging aspect of the present analysis. Although it is an old scientific chestnut, we must once again emphasize how important it is to support continuing basic science on tropical forests. We urgently need information on the biogeography, population sizes, comparative life histories, and environmental requirements of tropical tree species. As such data accumulate, we can not only make more accurate assessments of extinction risks, but also have more informed and intelligent suggestions for how to save tropical tree species and forests from extinction.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement