Cover Image

HARDBACK
$59.00



View/Hide Left Panel
FIGURE 7.1 Variation in taxon richness (A) and phylogenetic diversity (B) across the elevation gradient. Data are presented as the fraction of total richness and phylogenetic diversity across the gradient. Solid symbols indicate sample richness (core or quadrat), and open symbols indicate the pooled richness at each elevational site (n = 5 per site). At the sample level, Acidobacteria richness and phylogenetic diversity linearly decrease with elevation (regression analysis, r2 = 0.22, P < 0.05; r2 = 0.23, P < 0.05, respectively), whereas angiosperm richness and phylogenetic diversity patterns are hump-shaped (regression analysis, r2 = 0.53, P < 0.0005; r2 = 0.47, P < 0.005, respectively). Model choice was based on Akaike information criteria.

FIGURE 7.1 Variation in taxon richness (A) and phylogenetic diversity (B) across the elevation gradient. Data are presented as the fraction of total richness and phylogenetic diversity across the gradient. Solid symbols indicate sample richness (core or quadrat), and open symbols indicate the pooled richness at each elevational site (n = 5 per site). At the sample level, Acidobacteria richness and phylogenetic diversity linearly decrease with elevation (regression analysis, r2 = 0.22, P < 0.05; r2 = 0.23, P < 0.05, respectively), whereas angiosperm richness and phylogenetic diversity patterns are hump-shaped (regression analysis, r2 = 0.53, P < 0.0005; r2 = 0.47, P < 0.005, respectively). Model choice was based on Akaike information criteria.

tion in sampling extent (i.e., the geographic distance between the furthest sampled elevations), which often occurs among studies, and sampling intensity (or effort) along the gradient within a taxonomic group, which often occurs within studies. As a result, the disparity in elevational richness patterns observed between bacteria and plants is likely caused by differences in how ecological and evolutionary processes have operated across the gradient (although see below for a discussion on the potential influence of scaling effects).

As expected, for both bacteria and plants (Forest et al., 2007) we found that the patterns of phylogenetic diversity mirrored those of taxon richness (Fig. 7.1B). However, a more detailed look at the phylogenetic structure of the bacterial and plant communities revealed another significant difference. At all elevations bacterial communities had a tendency to be more phylogenetically clustered than expected by chance (Fig. 7.2). This observation is consistent with results reported by Horner-Devine and Bohannan (2006) who found that bacterial communities in a wide range of environments tended to be phylogenetically more closely related than expected



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement