Cover Image

HARDBACK
$59.00



View/Hide Left Panel

hotel industry—with its collective global ambition and growing emphasis on mind-stimulating travel experiences—has perhaps more financial interest, capacity, and incentive than any other private industry to partner with science in charting and protecting the world’s premier biological heritage reserves. The PANGEA initiative aims to go well beyond traditional nature-tourism ventures by envisioning a global archipelago of interconnected “wonder sites” where the scientific study and preservation of nature are the explicit and formal motivation for linking sustainable economics with science.

The perspectives and data of ecological and evolutionary genetics can contribute to parkland conservation efforts in many ways. For example, they can help to identify species and biodiversity hotspots, especially for otherwise poorly known taxonomic groups. They can vastly improve our understanding of phylogenetic relationships of numerous taxa within and among the extant regional biotas that conservationists might seek to protect (Avise, 2004; Purvis et al., 2005b; Godfray, 2007). Finally, they can help to illuminate many management-relevant aspects of the biology and natural history of particular species that warrant special conservation concern.

Most of the general sentiments summarized above (a notable exception perhaps being the PANGEA WORLD initiative) reflect conventional wisdoms, at least among many biologists. Here I suggest how phylogeographic perspectives might offer an additional opportunity in parkland motivation that is less widely appreciated. Phylogeography is a relatively young biological field that deals with descriptions and interpretations of the spatial distributions of genealogical lineages, especially within and among closely related species (Avise, 2000). An emerging phylogeographic generality is that many, if not most, extant taxonomic species are spatially subdivided into small numbers of highly distinctive historical units (Avise and Walker, 1999).

Many of these distinctive genealogical entities [sometimes referred to as evolutionarily significant units (ESUs)] (Ryder, 1986; Moritz, 1994) began diverging from one another in unglaciated biological refugia of the Pleistocene Epoch or earlier (Klicka and Zink, 1997; Avise and Walker, 1998; Avise et al., 1998). In Europe, for example, extant populations of many plant and animal species bear the genomic footprints of phylogeographic differentiation in several disjunct ice-free areas (notably the Iberian Peninsula, the Italian Peninsula, and the Balkans) typically followed by post-Pleistocene dispersal from one or more of these ancestral homelands (Hewitt, 1996; Schmitt, 2007; Weiss and Ferrand, 2007). Likewise, key genealogical separations presumably tracing back to historical refugia distinguish regional populations of many species in different sections of the eastern United States (Avise, 1992; Soltis et al., 2006). Qualitatively similar patterns also



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement