National Academies Press: OpenBook

Cleaning Up Sites Contaminated with Radioactive Materials: International Workshop Proceedings (2009)

Chapter: 14 Observations Concerning Mayak--Frank L. Parker

« Previous: 13 Rehabilitation of Contaminated Groundwater Layers Near the Mayak Enterprise Using Deep Burial Technology--V. G. Skidanov, Ye. N. Kamnev, and A. I. Rybalchenko
Suggested Citation:"14 Observations Concerning Mayak--Frank L. Parker." National Research Council. 2009. Cleaning Up Sites Contaminated with Radioactive Materials: International Workshop Proceedings. Washington, DC: The National Academies Press. doi: 10.17226/12505.
×
Page 95
Suggested Citation:"14 Observations Concerning Mayak--Frank L. Parker." National Research Council. 2009. Cleaning Up Sites Contaminated with Radioactive Materials: International Workshop Proceedings. Washington, DC: The National Academies Press. doi: 10.17226/12505.
×
Page 96
Suggested Citation:"14 Observations Concerning Mayak--Frank L. Parker." National Research Council. 2009. Cleaning Up Sites Contaminated with Radioactive Materials: International Workshop Proceedings. Washington, DC: The National Academies Press. doi: 10.17226/12505.
×
Page 97
Suggested Citation:"14 Observations Concerning Mayak--Frank L. Parker." National Research Council. 2009. Cleaning Up Sites Contaminated with Radioactive Materials: International Workshop Proceedings. Washington, DC: The National Academies Press. doi: 10.17226/12505.
×
Page 98

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

14 Observations Concerning Mayak Frank L. Parker, Vanderbilt University The PowerPoint presentation and the papers about radioactive conditions around the Mayak site in this workshop give us an update on conditions at that site, likely the most radioactively contaminated area in the world, and on possible further remediation efforts. The authors also furnish us with more details than were previously available on the evolution of the dam at Reservoir 11 on the Te- cha River and on other measures being taken to reduce pressure on the dam and control seepage through it. My colleagues and I have previously explored the pos- sibilities of the collapse of the dams along the Techa River and the radiological consequences that this might entail. It was reassuring to see that measures had been taken to strengthen the dam and relieve the pressures on its face. The impact   Glagolenko, Yu. V., Ye. G. Drozhko, and S. I. Rovny. 2009. Experience in rehabilitating contami- nated land and bodies of water around the Mayak Production Association. Pp. 81-91 in Cleaning Up Sites Contaminated with Radioactive Materials: International Workshop Proceedings. Washington, D.C.: The National Academies Press.   Skidanov, V. G., Ye. N. Kamnev, and A. I. Rybalchenko. 2009. Rehabilitation of contaminated groundwater layers near the Mayak enterprise using deep burial technology. Pp. 92-94 in Cleaning Up Sites Contaminated with Radioactive Materials: International Workshop Proceedings. Washington, D.C.: The National Academies Press.  International Institute for Applied Systems Analysis (IIASA). September 1996. Mayak Case Study: Draft Final Report to Lawrence Berkeley Laboratory (DE-AC03-76SF00098-DOE). 95

96 CLEANING UP SITES CONTAMINATED WITH RADIOACTIVE MATERIALS of the dam failures had not been published at the time that my colleagues and I made our analyses. However, in 1998, a Russian publication on the distribution of radionuclides on the floodplains of the Techa River was released. These data could have been utilized to validate or reject the results of the modeling and the projected doses to people utilizing the floodplain area. One of the suggestions in the International Institute for Applied Systems Analysis report, based on some Russian work, was to divert the Techa River up- stream of Mayak to the Karabolka River, thereby reducing the amount of water flowing through the Techa River system. No mention is made of this diversion, although there have been stories of such construction. The authors also update us on the filling in of Karachai Lake. The work is 95 percent complete. The dis- cussion of its present impact states that the “forecasts of how the situation may develop over a fairly long period (300 years) indicate that in the future there will be practically no radiologically significant discharge of contaminated groundwa- ter into the open hydrographic network.” There is no mention of the closure of water wells in the vicinity that had been an imminent threat earlier nor the likely effect after 300 years. The environmental discharges from the Mayak enterprise are often compared with those from the Hanford site in the United States. Both were the first produc- tion sites for plutonium in their respective countries. However, the resemblance ends there. Though the number of becquerels (curies) discharged to the respec- tive rivers—Techa and Columbia—are similar, the Hanford wastes were almost entirely short-lived induced radioactive nuclides, while the Mayak wastes also consisted of many long-lived fission products. Further, the flow in the Columbia River at that point averages 3,500 m3 per second and in the Techa River at its mouth the flow was 7 m3 per second. Consequently, with much lower releases of long-lived radionuclides and much greater dilution, the effects of liquid radioac- tive releases to the environment have been much lower in the Hanford region than they have been in the Mayak region. For example, no people were displaced from their homes on the Colombia River, while more than 8,000 were moved from the Techa River sites. The impact of the releases of iodine-131 to the atmosphere from the Hanford  Govorun, A. P., A. V. Chenokov, and S. B. Shcherbak. 1998. Distribution of 131Cs inventory in the floodplain of the Techa River in the Muslyumovo village region. Atomic Energy 84(6).  Glagolenko et al., op. cit.  Evans, R. G., M. J. Hattendorf, and C. T. Kincaid. February 2000. Evaluation of the Potential for Agricultural Development at the Hanford Site, PNNL-13125. Available online at www.osti.gov/ bridge/servlets/purl/751663-dcRc24/webviewable/751663.PDF.  Akleyev, A. V., and M. F. Kisselyov, scientific editors (translators K. M. Zhidkova and K. A. Akleyeva). 2002. Medical-Biological and Ecological Impacts of Radioactive Contamination of the Techa River. Chelyabinsk: Fregat.  Health Physics: The Radiation Safety Journal 93(3), September 2007. The entire issue is devoted to radiological conditions at the Mayak site.

OBSERVATIONS 97 site has been extensively studied. The impact on “downwinders” near the Han- ford site was greatest for children who received an average thyroid dose of 235 rads, and at the most impacted areas the doses ranged from 54 to 870 rads.  Until now, no such studies of the iodine-131 releases from Mayak have been published, but are due to be published in 2008. The paper by Skidanov10 and a companion paper by Rybalchenko11 caused the most comment at the meeting because of the change in view on the viability of deep geological disposal near the Mayak site. This brought a response that excessive amounts of tritium have been found in the vicinity of the deep well injection system at Krasnoyarsk. Rybalchenko responded that the tritium was due to surface operations at the plant. However, Nosov et al. wrote, “The tritium con- centration in the Podporogovy stream . . . is an indicator of the possible relation between surface waters and the region of unloading of the underground levels, which are collectors for pumping liquid radioactive wastes on the Severny test area.”12 In addition, Bolsunovsky and Bondareva state, “In water and sediment samples of the Bolshaya Tel River (a tributary of the Yenisei River) the tritium content turned out to be at least 10 times higher than background values of the Yenisei River. This allows the conclusion that there is water exchange between the surface waters and the radioactively contaminated underground horizons of the Severny site.”13 Finally, Kasyanova states, “In our country, since the 1960s, radioactive waste have been stored underground in the regions of Tomsk, Kras- noyarsk, and Dimitrovgrad . . . . The risk associated with these objects is high. Extreme accident situations due to caused underestimation of the characteristic features of the spatiotemporal changes in the development of present-day geody- namic processes have not been ruled out here.”14 It appears that the only way to settle this argument is to actually sample the projected flow paths to determine if there are greater concentrations of tritium there than in background samples.   The Technical Steering Panel of the Hanford Environmental Dose Reconstruction Project. 1994. Summary: Radiation Dose Estimates from Hanford Radioactive Material Releases to the Air and the Columbia River. Washington State Department of Ecology.   Gephart, R. E. 2003. Hanford: A Conversation about Nuclear Waste Cleanup. Columbus, OH: Battelle Press.   Glagolenko, Yu. V., Ye. G. Drozhko, Yu. G. Mokrov, N. P. Piatin, S. I. Rovny, L. R. Anspaugh, and B. A. Napier. In press. Method and results of reconstruction of radioactive noble gas releases from graphite reactor stacks of Mayak Production Association for the total period of its operation. Radiation Safety Problems (Mayak Production Association Scientific Journal). 10 Skidanov et al., op. cit. 11 Skidanov et al., op. cit. 12 Nosov, A. V., A. M. Martynova, V. F. Shabanov, Yu. V. Savitskii, A. E. Shishlov, and Yu. A. Revenko. 2001. Investigation of the tritium transport by water flows from the territory of the Mining- Chemical Combine in Krasnoyarsk. Atomic Energy 90(1). 13 Bolsunovsky, A. Yu., and L. G. Bondareva. 2003. Tritium in surface waters of the Yenisei Basin. Journal of Environmental Radioactivity 66. 14 Kasyanova, N. A. 2002. Safety of deep burial of radioactive wastes. Atomic Energy 93(1).

98 CLEANING UP SITES CONTAMINATED WITH RADIOACTIVE MATERIALS Until that is done, there will continue to be uncertainty about the safety of the deep injection disposal sites in Russia. It is unfortunate that the papers presented on Mayak contained no references, so more detailed information was not easily available. I am indebted to my Russian and American colleagues for more detailed dis- cussions on these topics and the detailed discussions on remediation of Russian sites covered in Alexakhin et al.15 15  Alexakhin, R. M., L. A. Buldakov, V. A. Gubanov, Ye. G. Drozhko, L. A. Ilyin, I. I. Kryshev, I. I. Linge, G. N. Romanov, M. N. Savkin, M. M. Saurov, F. A. Tikhomirov, and Yu. B. Kholina. 2004. Large Radiation Accidents: Consequences and Protective Countermeasures. Moscow: IzdAT.

Next: 15 Remediation of Contaminated Facilities at the Kurchatov Institute--V. G. Volkov, Yu. A. Zverkov, S. G. Semenov, A. V. Chesnokov, and A. D. Shisha »
Cleaning Up Sites Contaminated with Radioactive Materials: International Workshop Proceedings Get This Book
×
 Cleaning Up Sites Contaminated with Radioactive Materials: International Workshop Proceedings
Buy Paperback | $69.00 Buy Ebook | $54.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

This publication features papers presented at the Workshop on Cleaning Up Sites Contaminated with Radioactive Materials, held in Moscow in June 2007. This activity was organized by the National Academies in cooperation with the Russian Academy of Sciences and with funding provided by the Russell Family Foundation. The workshop was designed to promote exchanges of information on specific contaminated sites in Russia and elsewhere and to stimulate greater attention to the severity of the problems and the urgent need to clean up sites of concern to the local and international communities.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!