8
The Early Childhood Workforce and Its Professional Development

It is often said that the quality of any institution is based on the quality of its personnel. This is especially true of the array of institutions and programs that serve young children. The adults—early childhood teachers—who directly support the academic/intellectual, social, emotional, and physical development of preschoolers in the United States are pivotal to children’s short-term development and their long-term outcomes. Early childhood teachers are an essential ingredient in achieving the intentions of this report, notably improved attention to and outcomes in early childhood mathematics. For these reasons, we address the early childhood workforce and their professional development.

Terminology regarding the early childhood workforce is often used inconsistently (Kagan, Kauerz, and Tarrant, 2008). In this discussion, the following terms are used:

  • Early childhood education (ECE) teachers or the ECE teaching workforce includes all personnel whose primary role is to provide direct instructional services for young children. Included in this category are lead teachers, assistant teachers, aides, and family child care (FCC) providers.

  • ECE workforce includes those who carry out both instructional and noninstructional roles in early childhood education settings. Thus, the term workforce is an inclusive one that embraces teachers, others who work in early childhood education settings and whose primary responsibility is not instructional (e.g., administrators), and indi-



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 289
8 The Early Childhood Workforce and Its Professional Development It is often said that the quality of any institution is based on the quality of its personnel. This is especially true of the array of institu- tions and programs that serve young children. The adults—early childhood teachers—who directly support the academic/intellectual, social, emotional, and physical development of preschoolers in the United States are pivotal to children’s short-term development and their long-term outcomes. Early childhood teachers are an essential ingredient in achieving the intentions of this report, notably improved attention to and outcomes in early childhood mathematics. For these reasons, we address the early childhood workforce and their professional development. Terminology regarding the early childhood workforce is often used inconsistently (Kagan, Kauerz, and Tarrant, 2008). In this discussion, the following terms are used: • Early childhood education (ECE) teachers or the ECE teaching work- force includes all personnel whose primary role is to provide direct instructional services for young children. Included in this category are lead teachers, assistant teachers, aides, and family child care (FCC) providers. • ECE workforce includes those who carry out both instructional and noninstructional roles in early childhood education settings. Thus, the term workforce is an inclusive one that embraces teachers, others who work in early childhood education settings and whose primary responsibility is not instructional (e.g., administrators), and indi- 2

OCR for page 289
20 MATHEMATICS LEARNING IN EARLY CHILDHOOD viduals who work in settings that support early childhood education (e.g., resource and referral coordinators). In this chapter, we begin by discussing the nature of the current early childhood workforce. We first present information on this workforce in general, discussing characteristics about the teachers themselves, includ- ing age, gender, ethnicity, educational experience, and background and key variables that influence their work, including compensation, turnover, work settings, and beliefs. We then turn to a more specific discussion of the early childhood workforce from a mathematical perspective. In the sec- ond section, we discuss the nature of the professional development of the workforce, first addressing the professional development of early childhood teachers in general and then turning to mathematics-specific professional development. BACKGROUND ON THE WORKFORCE Demographic Characteristics Over 50 percent of U.S. families with children under the age of 5 rely on nonparental care (Chernoff et al., 2007), and thus the ECE workforce is responsible for the care and education of large numbers of the nation’s young children. The early childhood workforce is fairly large, compris- ing 2.3 million individuals (Burton et al., 2002) and dispersed: About 24 percent work in centers, 28 percent in family child care, and 48 percent in informal family, friend, and neighbor (FFN) settings (Burton et al., 2002). It is important to note that although most early childhood care providers work in FFN settings the majority of children attend center-based programs in which the child-to-teacher ratio is higher (Burton et al., 2002). The focus of this section is on teachers in center-based and FCC settings. According to national averages, the ECE teaching workforce is mainly comprised of white women in their late 30s and 40s (Saluja, Early, and Clifford, 2002); however, race/ethnicity varies across state and program type (see Table 8-1 for a breakdown of early childhood educators by race/ ethnicity). For example, the Head Start and home-based early child care teaching workforce is more ethnically balanced than the prekindergarten workforce (Early et al., 2005; Hart and Schumacher, 2005). In addition, in certain parts of the country, for example, Alameda County, California, the early childhood education and care workforce is more ethnically diverse. Three-quarters of the family child care centers there are staffed by women of color (Whitebook and Bellm, 2004). Also, in the population as a whole, there are increasingly more children who speak English as a second lan- guage (as cited in Hart and Schumacher, 2005), and thus there is a need for

OCR for page 289
21 THE EARLY CHILDHOOD WORKFORCE TABLE 8-1 Early Childhood Educators by Race/Ethnicity (percentage) Race/Ethnicity Program Type White Black Latino Asian Other Prekindergarten 64 13 15 2 8 Head Start 36 28 24 2 — Family child care 20 27 26 23 — NOTE: Family child care from Layzer and Goodson (2006); Head Start from Hart and Schumacher (2005); prekindergarten by Early et al. (2005). Prekindergarten refers to school or center-based programs that serve 4-year-olds, have an explicit purpose of improving school readiness, and are funded fully or partially by the state. SOURCE: Kagan et al. (2008). a more linguistically and ethnically/racially diverse ECE workforce (Howes, James, and Ritchie, 2003). Educational Experience and Background ECE teachers are a diverse group of individuals, with some having for- mal education and holding degrees from institutions of higher education or community colleges and others receiving credentials of competence offered by the profession. Some have only very limited training that is delivered on the job. Not surprisingly, the amount of formal education and credentials varies by program type; prekindergarten programs generally have the high- est percentage of teachers with degrees, while home-based or FCC providers have the lowest levels of formal education (Kagan et al., 2008). Table 8-2 shows the breakdown of percentages by program type. The specific nature of these variations and their relationship to teaching quality and effective- ness are elaborated in the section on the professional development of the workforce. Compensation Compensation, defined as a combination of annual salary or hourly wages and benefits (e.g., health insurance, paid vacation, sick leave, retire- ment plan), is quite low for some segments of the early childhood work- force. In the United States, the average annual salary for preschool teachers, one group of early childhood educators, is $25,800; for child care workers including FCC providers, it is $19,670 (Bureau of Labor Statistics, 2007); and for Head Start teachers, it is $24,608 (Hamm, 2006). Distinctions exist in the salaries of individuals according to the settings in which they work. A national survey conducted by the Bureau of Labor Statistics (BLS)

OCR for page 289
22 MATHEMATICS LEARNING IN EARLY CHILDHOOD TABLE 8-2 Level of Formal Education and Training of Early Childhood Education and Care Workforce (percentage) Level of Education and/or Training High Associate’s Child School Degree/Some B.A. or Development State License or Program Type or Less College More Associate Endorsement Prekindergarten 13 14 73 23 57 Head Start 31 33 36 22 N/A Center-based 30 41 30 18 44 Home-based (FCC) 56 32 11 3 7 NOTE: Prekindergarten data from Gilliam and Marchesseault (2005); Head Start data from Hamm (2006); center-based data (includes teachers and directors) and home-based data on formal education are from Herzenberg, Price, and Bradley (2005), center-based and family child care data on credentials from Saluja, Early, and Clifford (2002). SOURCE: Kagan et al. (2008). characterizes the field in terms of two categories: child care workers and preschool teachers. Child care workers are adults who primarily perform such duties as feeding, dressing, and overseeing the play of children, and preschool teachers provide a more educational experience for the children in their care. Using these definitions, child care workers were near the bot- tom of the compensation ladder, earning more than only 22 of the 820 occupations that were assessed by BLS in 2004—their earned incomes were within 5 percent of short-order cooks and parking lot attendants and considerably less than preschool teachers (Center for the Child Care Workforce, 2006). While there is little dispute regarding the wide salary differences that exist among early childhood teachers, most observers suggest that compen- sation differs according to the particular type of program and its attendant required credentials. For example, preschool teachers who work in settings in which teacher certification is required command higher salaries and compensation packages than teachers who work in settings in which lower levels or no certification is required. Setting and its attendant requirements are not the only variable that influences compensation; it also varies by geo- graphic region, with early childhood educators in southern states receiving the lowest levels of compensation (Center for the Child Care Workforce, 2006). In addition to low wages, many ECE teachers do not receive health insurance benefits from their employers. Specifically, 28 percent of center- based early childhood educators received health insurance benefits from their employer between 2002 and 2004, and 21 percent of ECE teachers reported that they had no health insurance during this time (Herzenberg,

OCR for page 289
2 THE EARLY CHILDHOOD WORKFORCE Price, and Bradley, 2005).1 Lack of health insurance is a significant issue; it may influence early childhood educators’ interactions at work, their overall financial status, and thus their ability to remain in the field over time, fuel- ing heavy personnel turnover rates. Stability and Turnover The turnover of early childhood teachers is quite high in some settings. A longitudinal study in California by Whitebook and colleagues (2001) found that 76 percent of the teachers employed by centers in 1996 and 82 percent of teachers employed by centers in 1994 had left these jobs by 2000 (Whitebook et al., 2001). Such high turnover rates have often been associ- ated with low compensation (Whitebook and Sakai, 2003). For example, Whitebook and colleagues (2001) found that early childhood educators re- ceiving higher than average wages were more likely to remain in their jobs, and those who left the field were more likely to go to higher paying jobs. Wage levels are often directly associated with the program type or sector in which the individual is employed. One national study showed that, on average, center-based teachers were in their current programs for 6.8 years, teachers in programs in pub- lic schools and religious settings were working in their programs for 7.8 years, and teachers in for-profit centers were in their programs for 5.6 years (Saluja, Early, and Clifford, 2002). Confirming these data, a five-state study found that publicly operated prekindergarten programs were found to have lower turnover rates than privately operated programs (Bellm et al., 2002). On average, publicly operated prekindergarten programs offered higher wages than privately operated programs (Gilliam and Marchesseault, 2005), which may be an explanation for the difference in turnover. Moreover, when ECE teachers are compared with K-12 teachers, the salaries for K-12 teachers are significantly higher (Kagan et al., 2008) and turnover is lower (Provasnik and Dorfman, 2005). Teacher turnover is relevant for all students, and it is particularly important for young children because of the impact on their development and learning. High levels of unpredictable turnover have been linked to poorer developmental outcomes for children, as well as to lower quality service (Helburn, 1995; Howes and Hamilton, 1993; Howes, Phillips, and Whitebook, 1992; Phillips et al., 2001; Whitebook, Sakai, and Howes, 1997, as cited in Kagan et al., 2008). 1 Although health insurance data were not collected for the remaining 51 percent of early childhood teachers, some probably received health insurance through a spouse when a spouse was present and had health coverage, purchased it privately, or purchased it through Medicaid (Mark Price, personal communication, January 12, 2009).

OCR for page 289
2 MATHEMATICS LEARNING IN EARLY CHILDHOOD For example, one study, The Cost, Quality and Child Outcomes in Child Care Centers (Cost, Quality, and Child Outcomes Study Team, 1995), found that higher quality programs, in which children demonstrated more advanced language and premathematical skills, were associated with lower turnover rates. Furthermore, the children showed better nonacademic out- comes than did children in high turnover programs. The children had more positive self-concepts, better relations with their teachers, and demonstrated more advanced social behavior and more positive attitudes toward child care situations. The effects of program quality are obvious for children of all socioeconomic backgrounds, but children from low-income backgrounds are especially influenced by the quality (or lack thereof) of their child care (Helburn, 1995). Finally, turnover is important in early childhood settings because many ECE teachers who leave the field are replaced by individuals with less training and experience; thus, turnover has long-term effects on teacher and program quality. While high turnover is often associated with instability and poorer outcomes for children, it is important to note that turnover is not always a negative factor (Kagan et al., 2008; Whitebook and Sakai, 2003). It may be beneficial when individuals who enter the early childhood educa- tion field and find that it is a poor fit for their skills or occupational goals leave (Whitebook and Sakai, 2003). Also, many studies do not distinguish between job turnover, which is defined as the rate at which teachers leave programs to take new positions in the early childhood education field, and occupational turnover, which is defined as the rate at which teachers leave programs to retire or enter a new field of work (Kagan et al., 2008). Clearly, more data are needed on turnover in the early childhood field. The Work Environment In any industry, the environment in which one works is likely to influ- ence one’s on-the-job attitude and performance. Work environment is de- fined as the physical setting, the reward system, clarity about expectations and roles, agency in decision making, supervisor support, and communi- cation (Hatch, 2006; Stremmel, Benson, and Powell, 1993; Whitebook, Howes, and Phillips, 1990). While the measures of work environment vary for different studies, the research shows that the work environment of early childhood educators plays a role in teachers’ quality and effec- tiveness (Kagan et al., 2008). For example, the Child Care Services Asso- ciation (2003) found that 22 percent of preschool teachers throughout North Carolina planned to leave the field within three years, yet only half as many teachers who worked in supportive environments reported hav- ing the same plans. The supports that were presumably related to more positive work environments include: (1) orientation, (2) written job de- scriptions, (3) written personnel policies, (4) paid education and training

OCR for page 289
25 THE EARLY CHILDHOOD WORKFORCE expenses, (5) paid breaks, (6) compensatory time for training, and (7) paid preparation/planning time (Child Care Services Association, 2003). Not surprisingly, teachers were more likely to stay in their positions when they understood the responsibilities of their position and the expectations that their supervisors and colleagues had of them, and there were improvements in compensation. Interestingly, improvements in the work environment have also been related to better psychological functioning, as defined by less emotional exhaustion (Stremmel, Benson, and Powell, 1993). Teachers are required to interact closely with children (Kagan et al., 2008); however, those who show lower levels of emotional well-being are less likely to spend time en- gaged with children (Hamre and Pianta, 2004). Children who have teachers who are less engaged may have fewer opportunities to learn from teacher- guided situations. The supervision and leadership that are provided to ECE teachers also make a difference in the quality of the work environment and subsequently in teachers’ quality and effectiveness (Kagan et al., 2008). Supervisors must have the management skills and leadership abilities necessary to support early childhood educators. Moreover, they must support teaching staff, but they also need support to continue to develop positive management styles and leadership abilities for themselves. Research by Jorde-Bloom and Sheerer (1992) suggests that professional development programs for supervisory staff improve the overall workplace climate and classroom quality. Fostering these skills in the supervisory staff has the potential to positively impact children’s learning through classroom quality and work- place climate. Teachers’ Beliefs About Early Childhood Education Like the variables discussed above, early childhood educators’ beliefs and values are important to understand. Teachers’ beliefs and values about teaching and learning not only shape classroom practices (Fang, 1996; Kagan, 1992; Stipek et al., 2001), but also serve as a filter through which meaning is derived. As such, values and beliefs have a powerful influence on educational change and innovation. Attempting changes in pedagogy without considering teachers’ pedagogical beliefs and values about educa- tion may lead to resistance in implementation of a new practice if teachers do not agree with the underlying educational value (Lee and Ginsburg, 2007b; Ryan, 2004). Thus, any effort to change educators’ classroom prac- tices must include consideration of how those teachers view their roles, the children they teach, and the purpose of the setting in which their interac- tions take place. Historically, the field of early childhood education has placed great emphasis on supporting children’s social and emotional development, with

OCR for page 289
26 MATHEMATICS LEARNING IN EARLY CHILDHOOD somewhat less of an emphasis on academic learning as an outcome of ex- periences in ECE settings (Kowalski, Pretti-Frontczak, and Johnson, 2001). Academic subjects were believed to be less important at this age because young children should investigate and explore their interests so that they develop a love of learning (Lee, 2006). However, in the past decade, there has been a groundswell of focus on academic learning as a legitimate, desir- able, and appropriate outcome of preschool enrollment (particularly in pub- licly funded programs, such as Head Start or state-funded prekindergarten). This movement, challenging teachers’ conventional beliefs, has created pressure on early childhood education systems and personnel to address academic achievement more focally and intentionally. Preschool programs that provide children with social, emotional, physi- cal, and academic learning opportunities are ideal learning environments. Educating the “whole child,” including social and emotional development, and providing preschool children with opportunities to engage in develop- mentally appropriate mathematics2 is essential to children’s immediate and later school success (Duncan et al., 2007; National Association for the Edu- cation of Young Children and National Council of Teachers of Mathemat- ics, 2002; National Mathematics Advisory Panel, 2008). It is important to note, in this regard, that the third edition of the National Association for the Education of Young Children’s (NAEYC) (2009) guidelines for devel- opmentally appropriate practice emphasize that pre-academic and cogni- tive skills, including those in mathematics, are essential to developmentally appropriate instruction. Teachers’ educational goals and pedagogical beliefs are also influenced by the backgrounds and characteristics of the children themselves. For example, socioeconomic status (SES) has been found to be related to ECE teachers’ instructional practices (Lee and Ginsburg, 2007a, 2007b; Stipek and Byler, 1997). Children from low-SES backgrounds are often behind their more affluent peers in mathematics achievement as early as kinder- garten (Clements, Sarama, and Gerber, 2005; Denton and West, 2002; Griffin and Case, 1997; Jordan, Huttenlocher, and Levine, 1994; Lee and Burkam, 2002; National Research Council, 2001b; Saxe, Guberman, and Gearhart, 1987; Starkey and Klein, 1992, 2008; Stipek and Ryan, 1997), and awareness of this disparity may influence teachers’ educational goals, beliefs, and instructional practices with children from economically disad- vantaged backgrounds. Children coming from low-SES homes, although increasingly enrolled in and benefiting from early childhood education, also require more intensive and appropriate educational interventions in 2 Developmentally appropriate mathematics includes a child-centered and positive non- evaluative mathematics environment, developmentally appropriate mathematics activities and manipulatives, and authentic mathematics assessment (as cited in Lee, 2005).

OCR for page 289
2 THE EARLY CHILDHOOD WORKFORCE order to perform at levels consistent with their more advantaged and skilled peers (Hamre and Pianta, 2005). In short, less advantaged children need programs that actually accelerate learning if they are to enter school not behind at the start. However, preschool and kindergarten teachers of low-SES children rate memorizing facts and rote tasks (procedural knowl- edge) as more important educational goals than problem solving and tasks involving reasoning (conceptual knowledge), and they tend to agree with a more basic skills teaching orientation than teachers of middle-SES children (Stipek and Byler, 1997). THE EARLY CHILDHOOD WORKFORCE AND MATHEMATICS The teaching of mathematics has been considered a part of the early childhood educators’ portfolio, along with many other developmental and disciplinary domains (e.g., social and emotional development, physical de- velopment, literacy, social studies) that they must address. To understand how the early childhood workforce currently views and addresses math- ematics, we examine early childhood teachers’ beliefs about mathematics, their mathematics knowledge, and how these beliefs and knowledge actu- ally impact what they do in the classroom. Teachers’ Values and Beliefs About Mathematics Education in Early Childhood Generally, early childhood teachers believe that social-emotional and physical development are more important to young children’s development and learning than academic activities, including mathematics (Ginsburg et al., 2006a; Lin, Lawrence, and Gorrell, 2003; Piotrkowski, Botsko, and Matthews, 2001). In a recent review of the research, Ginsburg and colleagues (2008) found that preschool teachers report social-emotional development, literacy, and then mathematics—in that order—as important educational goals for young children to achieve. A second set of beliefs focuses on the nature of mathematics instruction. Early childhood educators generally believe that mathematics education should focus on numeracy and arithmetic through some direct instruction (Lee and Ginsburg, 2007b). They also tend to believe that young children should engage in games and other activities in which mathematics learn- ing is fun and involves interesting toys or materials in small groups and that mathematics learning should not be highly demanding, nor should it be pushed on young children before they are “ready” (Lee and Ginsburg, 2007b). Finally, a third set of beliefs regarding instructional practice is driven by children’s characteristics, particularly SES. Research examining ECE teach-

OCR for page 289
2 MATHEMATICS LEARNING IN EARLY CHILDHOOD ers’ beliefs about instructional practices as a function of SES is a nascent area; however, recent studies shed light on how this characteristic shapes beliefs about teaching practices. For example, one study showed that early childhood teachers of children from low-SES backgrounds believed that mathematics instruction was an excellent way of preparing children for kin- dergarten and that children should engage in mathematics activities, even if they initially showed little or no interest (Lee and Ginsburg, 2007b). Con- versely, teachers of middle-SES prekindergarten children were more likely to state that, instead of having an academic focus, prekindergarten education should be child-centered and child-initiated and encourage children’s social- emotional development (Lee, 2006; Lee and Ginsburg, 2007b). In large part, this belief was in response to the notion that middle-SES parents put significant academic pressure on their children at home (Lee and Ginsburg, 2007b). It should be noted that, while SES-related differences were found in both early childhood educators’ beliefs about instructional practices and their educational goals, the field of early childhood education tends to stress social-emotional development rather than academic subjects. There are multiple reasons that early childhood teachers may not be inclined to focus on mathematics. One explanation is related to ECE poli- cies that put a premium on early literacy at the expense of other subject areas (which is discussed later in this chapter). Another reason stems from the education and training many ECE teachers receive, which has histori- cally placed more emphasis on social-emotional development. Specifically, some researchers suggest that this focus on social-emotional development is rooted in misconceptions or limited knowledge of the young children’s developmental capacities. For example, early childhood educators’ beliefs that young children are too cognitively immature for mathematics learning may be based on Piagetian theory, which states that young children in the preoperational stage (ages 2 to 6) are not likely to use or understand ab- stract ideas to make sense of their experiences (Ginsburg, Pappas, and Seo, 2001; Lee and Ginsburg, 2007b). However, Gelman and Gallistel (1986) found that young children do think abstractly in regard to counting objects (e.g., the abstraction principle: any discrete object can be counted, from stones to unicorns). Heuvel-Panhuizen (1990) found that early childhood educators significantly underestimated 6-year-olds’ mathematical capabil- ity. Specifically, teachers, counselors, and teacher trainers held significantly lower expectations for children’s knowledge of symbols, the counting se- quence, and adding and subtracting than what child outcomes showed (Heuvel-Panhuizen, 1990). Others suggest that such beliefs may rest on mistaken assumptions that young children are neither interested in, nor capable of, learning mathemat- ics. In fact, young children from birth to age 5 have informal mathematics knowledge (Clements and Sarama, 2007b; Ginsburg et al., 2006b) and,

OCR for page 289
2 THE EARLY CHILDHOOD WORKFORCE given developmentally appropriate experiences, enjoy mathematics learn- ing (Gelman, 1980; Irwin and Burgham, 1992). This informal knowledge includes the ideas of more and less, shape, space, pattern, as well as number and operations, and several other important areas (Gelman, 2000). Moreover, some researchers suggest that teachers’ fundamental knowl- edge about mathematics and mathematics instruction may be limited. For example, most teachers in the United States believe that mathematics is a static body of knowledge that mainly involves manipulating rules and procedures. From this point of view, the main objective in mathematics is to learn about discrete knowledge and arrive at the correct answer (Ball, 1991). Little thought is given to mathematics as a problem-solving process; rather, the outcome (i.e., getting the correct answer) is seen as the most important part of learning mathematics (Thompson, 1992). This belief is reflected clearly in early education instruction that is rote and feedback processes that focus solely on right and wrong answers (Pianta et al., 2005). Traditionally, early childhood educators have been taught that mathematics is a subject that requires the use of instructional practices that are devel- opmentally inappropriate for young children (Balfanz, 1999). In short, it is often the case that preschool teachers believe the content of meaningful mathematics is too difficult for themselves as well as for their students. The Impact of Teachers’ Beliefs and Knowledge on Instruction Given these beliefs and knowledge, we examine how early childhood teachers beliefs and understandings about mathematics impact mathematics instruction. Early childhood educators’ beliefs are clearly associated with their teaching practices (Charlesworth et al., 1991, 1993; Pianta et al., 2005; Stipek and Byler, 1997; Stipek et al., 2001). Pianta and colleagues (2005), for example, in their multistate study, found that, even after adjusting for teachers’ experience or degree status and program factors, such as teacher- student ratio or full-day/part-day classes, prekindergarten teachers’ beliefs about children were the factor most related to global classroom quality as measured by the Early Childhood Environmental Rating Scale-Revised (ECERS-R) and the Classroom Assessment Scoring System (CLASS, which reported on two dimensions, instructional climate and emotional climate). What instructional practices are teachers engaged in? Not only is em- phasis on social and emotional development in early childhood settings a belief, but also it is borne out in reality. Pianta and La Paro (2003), char- acterizing findings from standardized observations in more than a thousand early education settings, note that many early childhood classrooms are socially positive yet instructionally passive. Generally speaking and not surprisingly, preschool teachers spend less instructional time on mathemat- ics than they do on literacy (Clements and Sarama, 2007b; Early et al.,

OCR for page 289
1 MATHEMATICS LEARNING IN EARLY CHILDHOOD education. They should be updated to reflect current knowledge in early childhood mathematics, along the lines presented in this report. These sys- tems include: state certification and licensure requirements, Praxis exams, NAEYC standards and other credentialing systems outside of states. Currently, 48 states have arrangements such that they will give at least initial licensure to a teacher who has graduated from an NCATE- accredited institution, in a program that has been recognized by the appro- priate national specialty professional association, such as NAEYC (Margie Crutchfield, NCATE, personal communication, April 2, 2008) rather than specifying particular coursework or credits. However, programs with both NCATE and NAEYC accreditation account for less than one third of all early childhood bachelor’s programs (Maxwell, Lim, and Early, 2006). The Praxis exams, which are used in NCATE’s national accreditation/ recognition of early childhood programs, include multiple-choice tests of students’ basic skills (Praxis I) and tests of their competence in a specific teaching area (Praxis II). These exams serve as gatekeepers at various stages of students’ progress through the pre-service program and entry into the profession. The NAEYC standards are reportedly are used by faculty to guide design and improvement of associate’s and bachelor’s degree programs (Hyson, Tomlinson, and Lutton, 2007). Also, programs participating in NAEYC’s national recognition and accreditation systems are likely to focus on the NAEYC standards. However, while mathematics is explicitly part of the standards (in Standard 4: Teaching and Learning), the current sys- tem for national recognition and accreditation does not require pre-service programs to specifically document their graduates competence in math, nor are the actual learning opportunities offered in mathematics explicitly evaluated. Finally, the Child Development Associate (CDA) and the National Board for Professional Teaching Standards (NBPTS) certification are two credentialing systems that operate outside of state teacher licensure sys- tems. They are important because much of the early childhood workforce obtains or extends their professional development through them. The CDA is obtained through a combination of fieldwork, coursework, and other reading, writing, and conferencing requirements and is the most frequently required qualification for child care center directors (National Child Care Information Center, 2005). A review of the key materials used in CDA training and assessment conducted for this report revealed a need for addi- tional mathematics-related resources to increase the ability of advisers and instructors to support CDA candidates’ understanding of and engagement in early childhood mathematics. The NBPTS uses a rigorous review process to certify “accomplished teachers” in 26 fields, including the early childhood generalist category,

OCR for page 289
1 THE EARLY CHILDHOOD WORKFORCE which covers teachers with bachelor’s degrees who educate and care for children ages 3 to 9. Candidates provide the national board with four portfolio entries that document teaching competence and accomplishments outside the classroom, and demonstrate their content knowledge in a set of “assessment center exercises” specific to their certificate area. NBPTS requires that early childhood candidates include a videotaped mathematics- related instructional sequence in their portfolios (with detailed justifica- tion and self-analysis) and that one of two challenging assessment center exercises be in the domain of mathematics. Recent research has linked national board certification with improved child outcomes (National Re- search Council, 2008). Summary of issues related to pre-service teacher preparation in math- ematics. Early childhood educators who pursue pre-service education prior to their entry into the workforce participate in a range of types of associate’s and bachelor’s degree programs. These programs, in turn, ad- dress mathematics education preparation in a variety of ways, ranging from requiring general mathematics courses or specific mathematics coursework and fieldwork (or both), to combining mathematics with other disciplines, to hardly addressing it at all. While no data on the effects of pre-service mathematics programs on later teaching and outcomes exist, data from ef- fective in-service preparation indicate the content and types of experiences in early childhood mathematics that lead to positive outcomes—specifi- cally, to be prepared to teach mathematics to young children, teachers need knowledge of mathematics, mathematical development, effective pedagogy, including the use of curriculum, and assessment, as well as opportunities to use this knowledge in early childhood classrooms. In addition, beliefs that may hinder the acquisition and application of this knowledge should be addressed. The influence of systems, including licensure requirements, Praxis exams, NAEYC standards, and credentialing systems, is important to consider. These systems are potential levers for increasing the focus on mathematics in early childhood professional development. SUMMARY The nature of the early childhood workforce is important to understand as perhaps one of the most critical contextual factors to improving the mathematical development of young children. As one of the primary ve- hicles through which children learn mathematics, teachers exert enormous influence. Yet in preparing teachers to take on this challenge, it is critical to face the realities of the workforce—namely that teachers present with a wide range of educational backgrounds, compensation, and work settings but tend to share beliefs and values that are generally less supportive of

OCR for page 289
20 MATHEMATICS LEARNING IN EARLY CHILDHOOD mathematics in the early childhood classroom than social-emotional devel- opment. Compounding the challenge, these teachers, despite their diverse qualifications, have typically received little, if any, preparation to teach early childhood mathematics. Research on the effective delivery of mathematics-specific professional development is fairly new and there continues to be a need for more work in this area. Research indicates that professional development efforts at all levels are most effective when they address teachers’ own mathematics knowledge, beliefs about mathematics, knowledge of children’s mathemati- cal thinking and development as well as mathematics pedagogy, knowledge of appropriate mathematical assessment practices, and knowledge of re- sources for supporting mathematics in their classrooms. Of these, a focus on understanding children’s developmental progression in mathematics tied to specific activities through a curriculum is the most salient feature of ef- fective professional development in mathematics. Effective approaches to in-service professional development in mathe- matics are ongoing, grounded in theory, tied to a curriculum, job-embedded, at least partially onsite, delivered by a knowledgeable and prepared trainer, supported by administrators, and accompanied by supports for teachers during implementation through mentors, coaches, and technology, mean- ingful feedback, time for hands-on practice and reflection, and opportuni- ties to work and solve problems collaboratively with other teachers and trainers. Professional development in mathematics may require extensive contact hours and a sustained effort. Furthermore, professional develop- ment is but one component of successful teacher/program change. This requires collaboration from administrators, teachers, parents, and children, as well as those from the outside helping to bring about change. While few data are available regarding effective approaches to pre- service education in early childhood mathematics, the range of approaches to providing this preparation that currently exists demonstrates that many program graduates leave with minimal preparation to teach early childhood mathematics. To prepare early childhood educators at the pre-service level, programs need to require coursework and fieldwork in mathematics, focus- ing on the content areas described in this report that all teachers need in this domain. To support these changes in programs, teacher educators will require support. Furthermore, licensure and credentialing systems, assess- ments of teacher competence, and professional and state standards should reflect greater emphasis on mathematics. Although more data are available at the in-service level than at the pre-service level, even the available studies represent relatively small-scale efforts, presenting considerable logistical challenges to meeting the needs of the field. While data indicate that the use of technology, such as interactive websites and distance learning, is effective in reaching large numbers of

OCR for page 289
21 THE EARLY CHILDHOOD WORKFORCE teachers in early childhood programs, both at the in-service and pre-service levels, more research and creative solutions will be needed for scale-up efforts. This chapter describes the importance of the early childhood work- force in promoting children’s mathematical development. The next chapter presents the committee’s conclusions and recommendations to improve the teaching and learning of early childhood mathematics. REFERENCES AND BIBLIOGRAPHY Balfanz, R. (1999). Why do we teach young children so little mathematics? Some historical considerations. In J.V. Copley (Ed.), Mathematics in the Early Years (pp. 3-10). Reston, VA: National Council of Teachers of Mathematics. Ball, D.L. (1991). Research on teaching: Making subject matter knowledge part of the equa- tion. In J.E. Brophy (Ed.), Adances in Research On Teaching (vol. 2, pp. 1-48). Green- wich, CT: JAI Press. Barnett, W.S. (2003). Better teachers, better preschools: Student achievement linked with teacher qualifications. Preschool Policy Matters, 2. New Brunswick, NJ: National Insti- tute for Early Education Research. Bellm, D., Burton, A., Whitebook, M., Broatch, L., and Young, M. (2002). Inside the Pre-K Classroom: A Study of Staffing and Stability in State-Funded Prekindergarten Programs. Washington, DC: Center for the Child Care Workforce. Birman, B.F., Desimone, L., Porter, A.C., and Garet, M.S. (2000). Designing professional development that works. Educational Leadership, May, 28-33. Birman, B., LeFloch, K.C., Klekotka, A., Ludwig, M., Taylor, J., Walters, K., Wayne, A., and Yoon, K.S. (2007). State and Local Implementation of the No Child Left Behind Act, Volume II—Teacher Quality Under NCLB, Interim Report. Washington, DC: U. S. De- partment of Education, Office of Planning, Evaluation, and Policy Development, Policy and Program Studies Service. Blau, D.M. (2000). The production of quality in child-care centers: Another look. Applied Deelopmental Science, (3), 136-148. Burchinal, M.R., Cryer, D., Clifford, R.M., and Howes, C. (2002). Caregiver training and classroom quality in child care centers. Applied Deelopmental Science, 6, 2-11. Burton, A., Whitebook, M., Young, M., Bellm, D., Wayne, C., and Brandon, R.N. (2002). Estimating the Size and Components of the U.S. Child Care Workforce and Caregiing Population: Key Findings from the Child Care Workforce Estimate. Preliminary report. Washington, DC and Seattle, WA: Center for the Child Care Workforce and Human Services Policy Center. Center for the Child Care Workforce. (2006). Low Salaries for Staff, High Costs to Children. Washington, DC: Author. Center on the Developing Child at Harvard University. (2007). The Science of Early Childhood Deelopment: Closing the Gap Between What We Know and What We Do. Cambridge, MA: Author. Charlesworth, R., Hart, C.H., Burts, D., and Hernandez, S. (1991). Kindergarten teachers’ beliefs and practices. Early Deelopment and Care, 0, 17-35. Charlesworth, R., Hart, C.H., Burts, D., Thomasson, R.H., Mosley, J., and Fleege, P.O. (1993). Measuring the developmental appropriateness of kindergarten teachers’ beliefs and practices. Early Childhood Research Quarterly, , 255-276.

OCR for page 289
22 MATHEMATICS LEARNING IN EARLY CHILDHOOD Chernoff, J.J., Flanagan, K.D., McPhee, C., and Park, J. (2007). Preschool: First Findings from the Preschool Follow-Up of the Early Childhood Longitudinal Study, Birth Co- hort (ECLS-B). NCES #2008-025. Washington, DC: National Center for Education Statistics. Child Care Services Association. (2003). Working in Child Care in North Carolina: The North Carolina Child Care Workforce Surey. Chapel Hill, NC: Author. Clarke-Stewart, K.A., Vandell, D.L., Burchinal, M., O’Brien, M., and McCartney, K. (2002). Do regulable features of child-care homes affect children’s development? Early Childhood Research Quarterly, 1(1), 52-86. Clements, D.H. (2004). Major themes and recommendations. In. D.H. Clements, J. Sarama, and A.-M. DiBiase (Eds.), Engaging Young Children in Mathematics: Standards for Early Childhood Mathematics Education (pp. 7-72). Mahwah, NJ: Erlbaum. Clements, D.H. (2007). Curriculum research: Toward a framework for “research-based cur- ricula.” Journal for Research in Mathematics Education, , 35-70. Clements, D.H., and Sarama, J. (2007a). Effects of a preschool math curriculum: Summative research on the building blocks project. Journal of Research in Mathematics Education, , 136-163. Clements, D.H., and Sarama, J. (2007b). Early childhood mathematics learning. In F.K. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 461- 555). New York: Information Age. Clements, D.H., and Sarama, J. (2008). Experimental evaluation of a research-based preschool mathematics curriculum. American Educational Research Journal, 5, 443-494. Clements, D.H., Sarama, J., and Gerber, S. (2005, April). Mathematics Knowledge of Enter- ing Preschoolers. Paper presented at the Annual Meeting of the American Educational Research Association, Montreal, Canada. Cohen, D.K., and Hill, H.C. (2000). Instructional policy and classroom performance: The mathematics reform in California. Teachers College Record, 102(2), 294-343. Copley, J.V. (1999). (Ed.). Mathematics in the Early Years. Reston, VA: National Council of Teachers of Mathematics. Copley, J.V. (2004). The early childhood collaborative: A professional development model to communicate and implement the standards. In D.H. Clements, J. Sarama, and A.-M. DiBiase (Eds.), Engaging Young Children in Mathematics: Standards for Early Childhood Mathematics Education (pp. 401-414). Mahwah, NJ: Erlbaum. Copple, C.E. (2004). Mathematics curriculum in the early childhood context. In. D.H. Clements, J. Sarama, and A.-M. DiBiase (Eds.) Engaging Young Children in Mathemat- ics: Standards for Early Childhood Mathematics Education (pp. 83-87). Mahwah, NJ: Erlbaum. Cost, Quality, and Child Outcomes Study Team. (1995). Cost, Quality, and Child Outcomes in Child Care Centers Public Report. Denver: Economics Department, University of Colorado. Denton, K., and West, J. (2002). Children’s Reading and Mathematics Achieement in Kin- dergarten and First Grade. NCES #2002-125. Washington, DC: National Center for Education Statistics. Duncan, G.J., Claessens, A., Huston, A.C., Pagani, L.S., Engel, M., Sexton, H., et al. (2007). School readiness and later achievement. Deelopmental Psychology, , 1428-1446. Early, D.M., Barbarin, O., Bryant, D., Burchinal, M.R., Chang, F., and Clifford, R.M. (2005). Pre-Kindergarten in Eleen States: NCEDL’s Multi-state Study of Prekindergarten and Study of State-wide Early Education Programs (SWEEP), Preliminary Descriptie Re- port. Chapel Hill: University of North Carolina.

OCR for page 289
2 THE EARLY CHILDHOOD WORKFORCE Early, D.M., Bryant, D.M., Pianta, R.C., Clifford, R.M., Burchinal, M.R., Ritchie, S., et al. (2006). Are teachers’ education, major, and credentials related to classroom quality and children’s academic gains in pre-kindergarten? Early Childhood Research Quarterly, 21(2), 174-195. Early, D.M. Maxwell, K.L., Burchinal, M., Alva, S., Bender, R.H., Bryan, D., et al. (2007). Teachers’ education, classroom quality, and young children’s academic skills: Results from seven studies of preschool programs. Child Deelopment, (2), 558-580. Fang, Z. (1996). A review of the research on teacher beliefs and practices. Educational Re- search, (1), 47-65. Gelman, R. (1980). What young children know about numbers. Educational Psychologist, 15, 54-68. Gelman, R. (2000). The epigenesis of mathematical thinking. Journal of Applied Deelop- mental Psychology, 21, 27-37. Gelman, R., and Gallistel, C.R. (1986). The Child’s Understanding of Numbers. Cambridge, MA: Harvard University Press. Ghazvini, A., and Mullis, R.L. (2002). Center-based care for young children: Examining pre- dictors of quality. Journal of Genetic Psychology, 16(1), 112-125. Gilliam, W.S., and Marchesseault, C.M. (2005). From Capitols to Classrooms, Policies to Practice: State-Funded Prekindergarten at the Classroom Leel, Part 1: Who’s Teaching Our Youngest Students? Teacher Education and Training, Experience, Compensation and Benefits, and Assistant Teachers. New Haven, CT: Yale University, Yale Child Study Center. Ginsburg, H.P., and Ertle, B. (2008). Knowing the mathematics in early childhood mathemat- ics. In O.N. Saracho and B. Spodek (Eds.), Contemporary Perspecties on Mathematics in Early Childhood Education (pp. 45-66). Charlotte, NC: Information Age. Ginsburg, H.P., Pappas, S. and Seo, K.-H. (2001). Everyday mathematical knowledge: Asking young children what is developmentally appropriate. In S.L. Golbeck (Ed.), Psychologi- cal Perspecties on Early Childhood Education: Reframing Dilemmas in Research and Practice (pp. 181-219). Mahwah, NJ: Erlbaum. Ginsburg, H.P., Jang, S., Preston, M., Appel, A., and VanEsselstyn, D. (2004). Learning to think about early childhood mathematics education: A course. In C. Greenes and J. Tsankova (Eds.), Challenging Young Children Mathematically (pp. 40-56). Boston, MA: Houghton Mifflin. Ginsburg, H.P., Kaplan, R.G., Cannon, J., Cordero, M.I., Eisenband, J.G., Galanter, M., and Morgenlander, M. (2006a). Helping early childhood educators to teach mathematics. In M. Zaslow and I. Martinez-Beck (Eds.), Critical Issues in Early Childhood Professional Deelopment (pp. 171-202). Baltimore, MD: Paul H. Brookes. Ginsburg, H.P., Cannon, J., Eisenband, J.G., and Pappas, S. (2006b). Mathematical thinking and learning. In K. McCartney and D. Phillips (Eds.), Handbook of Early Child Deelop- ment (pp. 208-229). Oxford, England: Blackwell. Ginsburg, H.P., Lee, J.S., and Boyd, J.S. (2008). Mathematics education for young children: What it is and how to promote it. Social Policy Report, XXII(I), 3-23. Griffin, S., and Case, R. (1997). Re-thinking the primary school math curriculum: An ap- proach based on cognitive science. Issues in Education, , 1-49. Hamm, K. (2006). More Than Meets the Eye: Head Start Programs, Participants, Families, and Staff in 2005. Head Start series, brief no. 8. Washington, DC: Center for Law and Social Policy. Hamre, B.K., and Pianta, R.C. (2004). Self-reported depression in nonfamilial caregivers: Prevalence and associations with caregiver behavior in child-care settings. Early Child- hood Research Quarterly, 1, 297-318.

OCR for page 289
2 MATHEMATICS LEARNING IN EARLY CHILDHOOD Hamre, B.K., and Pianta, R.C. (2005). Can instructional and emotional support in the first- grade classroom make a difference for children at risk of school failure? Child Deelop- ment, 6, 949-967. Hart, K., and Schumacher, R. (2005). Making the Case: Improing Head Start Teacher Quali- fications Requires Increased Inestment. Head Start series, paper no. 1. Washington, DC: Center for Law and Social Policy. Hatch, L. (2006). Labor Turnoer in the Child-Care Industry: Exit or Voice? Preliminary Findings. University of Massachusetts, Amherst, MA. Helburn, S. (1995). Cost, quality, and child outcomes in child care centers: Key findings and recommendations. Young Children, 50, 40-44. Herzenberg, S., Price, M., and Bradley, D. (2005). Losing Ground in Early Childhood Educa- tion: Declining Workforce Qualifications in an Expanding Industry, 1-200. Wash- ington, DC: Economic Policy Institute. Heuvel-Panhuizen, M.V.D. (1990). Realistic arithmetic/mathematics instruction and tests. In K.P.E. Gravemeijer, M. van den Heuvel, and L. Streefland (Eds.), Contexts Free Produc- tions Tests and Geometry in Realistic Mathematics Education (pp. 53-78). Utrecht, The Netherlands: OW&OC. Honig, A.S., and Hirallal, A. (1998). Which Counts More for Excellence in Child Care Staff: Years in Serice, Education Leel, or ECE Coursework? Paper presented at the Annual Quality Infant/Toddler Caregiving Workshop, Syracuse, NY, June 15-19. Howes, C.E. (1997). Children’s experiences in center-based child care as a function of teacher background and adult:child ratio. Merrill-Palmer Quarterly, , 404-425. Howes, C.E., and Hamilton, C.E. (1993). The changing experience of child care: Changes in teachers and in teacher-child relationships and children’s social competence with peers. Early Childhood Research Quarterly, , 15-32. Howes, C.E., Phillips, D.A., and Whitebook, M. (1992). Teacher characteristics and effective teaching in child care: Findings from the National Child Care Staffing Study. Child and Youth Care Forum, 21(6), 399-414. Howes, C.E., James, J., and Ritchie, S. (2003). Pathways to effective teaching. Early Child- hood Research Quarterly, 1(1), 104-120. Hyson, M., Tomlinson, H.B., and Lutton, A. (2007, March). Quality of Early Childhood Teacher Preparation: A Moderating Variable Between Teachers’ Education and Child Outcomes? Paper presented at the Biennial Meeting of the Society for Research in Child Development, Boston, MA. Hyson, M., Tomlinson, H.B., and Morris, C. (2008, March). Does Quality of Early Child- hood Teacher Preparation Moderate the Relationship Between Teachers’ Education and Children’s Outcomes? Paper presented at American Educational Research Association Annual Meeting, New York, NY. Irwin, K., and Burgham, D. (1992). Big numbers and small children. New Zealand Mathemat- ics Magazine, 2, 9-19. Jordan, N.C., Huttenlocher, L., and Levine, S.C. (1994). Assessing early arithmetic abilities: Effects of verbal and nonverbal response types on the calculation performance of middle- and low-income children. Learning and Indiidual Differences, 6, 413-432. Jorde-Bloom, P., and Sheerer, M. (1992). The effect of leadership training on child care pro- gram quality. Early Childhood Research Quarterly, (4), 579-594. Kagan, D.M. (1992). Implications of research on teacher belief. Educational Psychologist, 2(1), 65-90. Kagan, S.L., Kauerz, K., and Tarrant, K. (2008). The Early Care and Education Teaching Workforce at the Fulcrum: An Agenda for Reform. New York: Teachers College Press. Klein, A., and Starkey, P. (1988). Universals in the development of early arithmetic cognition. New Directions for Child Deelopment, 1, 5-26.

OCR for page 289
25 THE EARLY CHILDHOOD WORKFORCE Kowalski, K., Pretti-Frontczak, K., and Johnson, L. (2001). Preschool teachers’ beliefs con- cerning the importance of various developmental skills and abilities. Journal of Research in Childhood Education, 16, 5-14. Layzer, J.I., and Goodson, B.D. (2006). National Study of Child Care for Low-Income Fami- lies Care in the Home: A Description of Family Child Care and the Experiences of the Families and Children Who Use It, Wae 1 Report. Washington, DC: Administration for Children and Families. Layzer, J.L., Goodson, B.D., and Moss, M. (1993). Life in Preschool: Obserational Study of Early Childhood Programs for Disadantaged Four-Year-Olds (vol. I). Cambridge, MA: Abt Associates. Lee, J. (2005). Correlations between kindergarten teachers’ attitudes toward mathematics and teaching practice. Journal of Early Childhood Teacher Education, 25, 173-184. Lee, J.S. (2006). Preschool teachers’ shared beliefs about appropriate pedagogy for 4-year-olds. Early Childhood Education Journal, (6), 433-441. Lee, J.S., and Ginsburg, H.P. (2007a). Preschool teachers’ beliefs about appropriate early literacy and mathematics education for low- and middle-socioeconomic status children. Early Education and Deelopment, 1(1), 111-143. Lee, J.S., and Ginsburg, H.P. (2007b). What is appropriate mathematics education for four- year-olds? Pre-kindergarten teachers’ beliefs. Journal of Early Childhood Research, 5(1), 2-31. Lee, V.E., and Burkam, D.T. (2002). Inequality at the Starting Gate: Social Background Dif- ferences in Achieement as Children Begin School. Washington, DC: Economic Policy Institute. Lin, H.-L., Lawrence, F.R., and Gorrell, J. (2003). Kindergarten teachers’ views of children’s readiness for school. Early Childhood Research Quarterly, 1(2), 225-237. Martinez-Beck, I., and Zaslow, M. (2006). Introduction: The context for critical issues in early childhood professional development. In M. Zaslow and I. Martinez-Beck (Eds.), Critical Issues in Early Childhood Professional Deelopment. Baltimore, MD: Paul H. Brookes. Maxwell, K.L., Lim, C-I., and Early, D.M. (2006). Early Childhood Teacher Preparation Pro- grams in the United States: National Report. Chapel Hill: University of North Carolina, FPG Child Development Institute. Monk, D. (1994). Subject area preparation of secondary mathematics and science teachers and student achievement. Economics of Education Reiew, 1(2), 125-145. National Association for the Education of Young Children and National Council of Teachers of Mathematics. (2002). Position Statement, Early Childhood Mathematics: Promoting Good Beginnings. Washington, DC: Author. National Child Care Information Center. (2005). Center Child Care Licensing Requirements: Minimum Early Childhood Education Preserice Qualifications, Administratie, and Annual Ongoing Training Hours for Directors. Washington, DC: Author. Available: http://www.nccic.org/pubs/cclicensingreq/cclr-directors.html [accessed July 2009]. National Institute of Child Health and Human Development Network Early Child Care Research Network. (2002). Early child care and children’s development prior to school entry: Results from the NICHD study of early child care. American Educational Research Journal, , 133-164. National Institute of Child Health and Human Development Network Early Child Care Re- search Network. (2005). Duration and developmental timing of poverty and children’s cognitive and social development from birth to third grade. Child Deelopment, 6(4), 795-810.

OCR for page 289
26 MATHEMATICS LEARNING IN EARLY CHILDHOOD National Mathematics Advisory Panel. (2008). Foundations for Success: The Final Report of the National Mathematics Adisory Panel. Washington, DC: U.S. Department of Educa- tion. Available: http://www.ed.gov/about/bdscomm/list/mathpanel/report/final-report.pdf [accessed August 2008]. National Research Council. (2001a). Eager to Learn: Educating our Preschoolers. B. Bowman, M.S. Donovan, and M.S. Burns (Eds.). Washington, DC: National Academy Press. National Research Council. (2001b). Adding It Up: Helping Children Learn Mathematics. J. Kilpatrick, J. Swafford, and B. Findell (Eds.). Mathematics Learning Study Committee, Center for Education. Division of Behavioral and Social Sciences and Education. Wash- ington, DC: National Academy Press. National Research Council. (2008). Assessing Accomplished Teaching: Adanced-Leel Cer- tification Programs. Committee on Evaluation of Teacher Certification by the National Board for Professional Teaching Standards. M.D. Hakel, J.A. Koenig, and S.W. Elliott (Eds.). Board on Testing and Assessment, Center for Education. Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press. National Research Council and Institute of Medicine. (2000). From Neurons to Neighbor- hoods: The Science of Early Childhood Deelopment. Committee on Integrating the Science of Early Childhood Development. J.P. Shonkoff and D.A. Phillips (Eds.) Board on Children, Youth, and Families. Commission on Behavioral and Social Sciences and Education. Washington, DC: National Academy Press. Norris, D.J. (2001). Quality of care offered by providers with differential patterns of work- shop participation. Child and Youth Care Forum, 0(2), 111-121. Phillips, D., Mekos, D., Scarr, S., McCartney, K., and Abbott-Shim, M. (2001). Within and beyond the classroom door: Assessing quality in child care centers. Early Childhood Research Quarterly, 15(4), 475-496. Pianta, R.C., and La Paro, K. (2003). Improving early school success. Educational Leader- ship, 60(7), 24-29. Pianta, R.C., Howes, C., Burchinal, M., Bryant, D., Clifford, R.M., Early, D.M., and Barbarin, O. (2005). Features of pre-kindergarten programs, classrooms, and teachers: Prediction of observed classroom quality and teacher-child interactions. Applied Deelopmental Science, (3), 144-159. Piotrkowski, C.S., Botsko, M., and Matthews, E. (2001). Parents’ and teachers’ beliefs about children’s school readiness in a high-need community. Early Childhood Research Quar- terly, 15(4), 537-558. Provasnik, S., and Dorfman, S. (2005). Mobility in The Teacher Workforce: Findings from the Condition of Education, 2005. Washington, DC: U.S. Department of Education, National Center for Education Statistics. Ryan, S. (2004). Message in a model: Teachers’ responses to a court-ordered mandate for curriculum reform. Educational Policy, 1(5), 661-685. Saluja, G., Early, D.M., and Clifford, R.M. (2002). Demographic characteristics of early child- hood teachers and structural elements of early care and education in the United States. Early Childhood Research and Practice, . Available: http://ecrp.uiuc.edu/v4n1/saluja. html [accessed January 2007]. Sarama, J., and DiBiase, A.-M. (2004). The professional development challenge in preschool mathematics. In D.H. Clements, J. Sarama, and A.-M. DiBiase (Eds.), Engaging Young Children in Mathematics: Standards for Early Childhood Mathematics Education (pp. 415-446). Mahwah, NJ: Erlbaum. Sarama, J., Clements, D.H., Starkey, P., Klein, A., and Wakeley, A. (2008). Scaling up the implementation of a pre-kindergarten mathematics curriculum: Teaching for understand- ing with trajectories and technologies. Journal of Research on Educational Effectieness, 1, 89-119.

OCR for page 289
2 THE EARLY CHILDHOOD WORKFORCE Saxe, G.B., Guberman, S.R., and Gearhart, M. (1987). Social processes in early number de- velopment. Monographs of the Society for Research in Child Deelopment, 52(2, Serial No. 216). Schram, P., Wilcox, S.K., Lapan, G., and Lanier, P. (1988). Changing preservice teachers beliefs about mathematics education. In C.A. Mahers, G.A. Goldin, and R.B. Davis (Eds.), Pro- ceedings of PMENA 11 (vol. I, pp. 296-302). New Brunswick, NY: Rutgers University. Starkey, P., and Klein, A. (1992). Economic and cultural influence on early mathematical devel- opment. In F.L. Parker, R. Robinson, S. Sombrano, C. Piotrowski, J. Hagen, S. Randolph, and A. Baker (Eds.), New Directions in Child and Family Research: Shaping Head Start in the 0’s (pp. 4-40). New York: National Council of Jewish Women. Starkey, P., and Klein, A. (2008). Sociocultural influences on young children’s mathematical knowledge. In O.N. Saracho and B. Spodek (Eds), Contemporary Perspecties on Math- ematics in Early Childhood Education (pp. 253-276). Charlotte, NC: Information Age. Starkey, P., Klein, A., and Wakeley, A. (2004). Enhancing young children’s mathematical knowledge through a pre-kindergarten mathematics intervention. Early Childhood Re- search Quarterly, 1, 99-120. Stipek, D.J., and Byler, P. (1997). Early childhood teachers: Do they practice what they preach? Early Childhood Research Quarterly, 12, 305-325. Stipek, D.J., and Ryan, R.H. (1997). Economically disadvantaged preschoolers: Ready to learn but further to go. Deelopmental Psychology, (4), 711-723. Stipek, D.J., Givvin, K.B., Salmon, J.M., and MacGyvers, V.L. (2001). Teachers’ beliefs and practices related to mathematics instruction. Teaching and Teacher Education, 1, 213-226. Stremmel, A.J., Benson, M.J., and Powell, D.R. (1993). Communication, satisfaction, and emotional exhaustion among child care center staff: Directors, teachers, and assistant teachers. Early Childhood Research Quarterly, (2), 221-233. Thompson, A. (1992). Teachers’ beliefs and conceptions: A synthesis of the research. In D. Grouws (Ed.), Handbook of Research in Mathematics Teaching and Learning (pp. 127- 146). New York: MacMillan. Tout, K., and Zaslow, M. (2004). Tiered Reimbursement in Minnesota Child Care Settings: A Report of the Minnesota Child Care Policy Research Partnership. Washington, DC: Child Trends. Tout, K., Zaslow, M., and Berry, D. (2006). Quality and qualifications: Links between profes- sional development and quality in early care and education settings. In M. Zaslow and I. Martinez-Beck (Eds.), Critical Issues in Early Childhood Professional Deelopment (pp. 77-110). Baltimore, MD: Paul H. Brookes. What Works Clearinghouse. (2007). SRA Real Math Building Blocks Pre-K. Available: http:// ies.ed.gov/ncee/wwc/reports/early_ed/sra_prek/ [accessed July 2009]. Whitebook, M. (2003). Early Education Quality, Higher Teacher Qualifications for Better Learning Enironments: A Reiew of the Literature. Berkeley: University of California, Center for the Study of Child Care Employment. Whitebook, M., and Bellm, D. (2004). Lessons from CARES and Other Early Care and Education Workforce Initiaties in California, 1-200: A Reiew of Ealuations Completed by Fall 200. Berkeley: University of California, Center for the Study of Child Care Employment. Whitebook, M., and Sakai, L. (2003). Turnover begets turnover: An examination of job and occupational instability among child care center staff. Early Childhood Research Quar- terly, 1, 273-293. Whitebook, M., Howes, C., and Phillips, D. (1990). Who Cares? Child Care Teachers and the Quality of Care in America. The National Child Care Staffing Study. Washington, DC: Child Care Employee Project.

OCR for page 289
2 MATHEMATICS LEARNING IN EARLY CHILDHOOD Whitebook, M., Sakai, L. and Howes, C. (1997). NAEYC Accreditation as a Strategy for Improing Child Care Quality: An Assessment by the National Center for the Early Childhood Workforce, Final Report. Washington, DC: National Center for the Early Childhood Work Force. Whitebook, M., Sakai, L., Gerber, E., and Howes, C. (2001). Then and Now: Changes in Child Care Staffing, 1-2000: Technical Report. Washington, DC: National Center for the Early Childhood Work Force. Yoon, K.S., Duncan, T., Lee, S.W.-Y., Scarloss, B., and Shapley, K. (2007). Reiewing the Eidence on How Teacher Professional Deelopment Affects Student Achieement. Is- sues and Answers, REL #2007-No. 33. Washington, DC: U.S. Department of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance, Regional Educational Laboratory Southwest. Available: http://ies.ed.gov/ncee/ edlabs [accessed July 2009].