Questions? Call 800-624-6242

| Items in cart [0]

HARDBACK
price:\$54.95

## Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity (2009) Center for Education (CFE)

### Citation Manager

. "2 Foundational Mathematics Content." Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity. Washington, DC: The National Academies Press, 2009.

 Page 31

The following HTML text is provided to enhance online readability. Many aspects of typography translate only awkwardly to HTML. Please use the page image as the authoritative form to ensure accuracy.

Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity

FIGURE 2-4 Comparing.

about using counting to compare is that a number that is said later in the counting word list corresponds to a collection that has a greater number of objects than does a collection corresponding to a number earlier in the sequence. For example, one knows that there are more beads in a collection of eight black beads than there are in a collection of seven white beads because 8 occurs later in the counting list than 7 (see the bottom of Figure 2-4). Counting thus provides a more advanced way to compare sets of things than direct matching because it relies on knowledge about how numbers compare. Counting is also a more powerful way to compare sets of things than direct matching because it allows sets that are not in close proximity to be compared.

A key point about comparing collections of objects is that counting can be used to do so, and it relies on the link between the number list and cardinality: Numbers later in the list describe greater cardinalities than do numbers earlier in the list. Finding out which collection is more than another collection is easier than determining exactly how many more that collection has than the other, which can be formulated as an addition or subtraction problem. This more specific version of comparison is discussed in the next section.

 Page 31
 Front Matter (R1-R12) Summary (1-4) Part I: Introduction and Research on Learning (5-6) 1: Introduction (7-20) 2 Foundational Mathematics Content (21-58) 3 Cognitive Foundations for Early Mathematics Learning (59-94) 4 Developmental Variation, Sociocultural Influences, and Difficulties in Mathematics (95-120) Part II: Teaching-Learning Paths (121-126) 5 The Teaching-Learning Paths for Number, Relations, and Operations (127-174) 6 The Teaching-Learning Paths for Geometry, Spatial Thinking, and Measurement (175-222) Part III: Contexts for Teaching and Learning (223-224) 7 Standards, Curriculum, Instruction, and Assessment (225-288) 8 The Early Childhood Workforce and Its Professional Development (289-328) Part IV: Future Directions for Policy, Practice, and Research (329-330) 9 Conclusions and Recommendations (331-350) Appendix A: Glossary (351-358) Appendix B: Concepts of Measurement (359-362) Appendix C: Biographical Sketches of Committee Members and Staff (363-370) Index (371-386)