Cover Image


View/Hide Left Panel

information from the Internet. Rapid changes in vehicle design are being made to accommodate these new devices. Nearly 70 percent of new 2007 vehicles are compatible with MP3 players, and all 2009 Chrysler vehicles will have wireless connections to the Internet (Bensinger, 2008). These infotainment devices have the potential to make driving time more enjoyable and productive, but they also have the potential to distract drivers.

Sensor, data fusion, and control technologies promise to improve driving safety by mitigating the distraction potential of infotainment devices. Increasingly, vehicles are being equipped with sensors that monitor surrounding vehicles to identify potential collisions, warn drivers, and even respond with emergency braking. Similar technologies that can automate driving during routine situations include adaptive cruise control that accelerates and decelerates the vehicle to maintain a constant speed or constant distance from the vehicle ahead (Walker et al., 2001).

Other devices can assist drivers with emergency braking, help them keep the car centered in the lane, and attend to potential threats of collisions (Norman, 2007). Although these developments are promising, driver-support technologies may not deliver the promised safety benefits because (1) they often respond imperfectly and (2) they may encourage people to pay less attention to driving if they think the system will protect them from distraction-related lapses (Evans, 2004; Stanton et al., 1997).

As new technology has done in other domains, the introduction of infotainment and driver-support technology will fundamentally change driving. The complex array of factors that affect driving safety means that focusing simply on improving technology (e.g., designing a more capable automatic braking system) will not ensure that driving is safer, not only because technology will remain imperfect, but also because safety ultimately depends on leveraging a driver’s capabilities. Technologies must be designed in a way that attracts a driver’s attention to what matters most and does not annoy or distract a driver from safety-critical events.

Figure 1 illustrates the challenges of combining people and technology. The top diagram shows the complementary capacities of humans and technology—both are limited and may overlap to some degree. The middle diagram shows an effective combination of human and technological capacity—in combination, both perform better than either does alone. The bottom diagram shows a dysfunctional situation in which combined human/technology performs worse than either does alone; this can occur if the person does not capitalize on the capacity of the technology (on the left) or relies on the technology inappropriately (on the right). The disuse and/or misuse of technology often occurs when a new technology is introduced (Parasuraman and Riley, 1997). In addition, some technologies, such as warning devices, can annoy people and undermine product acceptance (on the left). Poorly coordinated technology can also interfere with a driver’s ongoing response to a situation (on the right).

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement