Contributions to the Nation’s Energy Goals

The effectiveness of the Catalysis Science Program can also be judged by measuring its contribution or likely contribution to meeting near-term and long-term national energy goals. Near-term and long-term national energy goals have been neither clearly stated nor static during the past 20 years. However, for the purposes of this study, we will consider energy goals to be any goals related to reducing the amount of energy we need (efficiency) or reducing our need to import oil immediately or over the long term.

As described in Chapter 3, the Catalysis Science Program portfolio is distributed between the two main categories of catalysis: heterogeneous and homogenous, each of which will be assessed separately below. The committee has made this distinction for convenience, based on the traditional division in catalysis. However, researchers are increasingly crossing the traditional barriers between heterogeneous and heterogeneous catalysis, blurring the distinction between the two (see the discussion of Contractor Meetings in Chapter 4), which the committee definitely views as a positive development. The names of principal investigators are provided in the assessments where appropriate, along with references to contractor meeting abstract books or published journal articles. Lists of all of the principal investigators who received funding during the fiscal years (FYs) 1999 to 2007 and FY 2008 are provided in Appendix F.


Heterogeneous catalysts are the catalysts most commonly used in industrial processes. Heterogeneous catalysis involves the use of a catalyst (which is typically a solid) that is in a different phase from the reactants (which are typically gases). Heterogeneous catalysts range in composition from solid metals to encapsulated metal nanoparticles in solution.

Virtually every drop of oil is in contact with multiple heterogeneous catalysts during the refining process. Most commodity chemicals are produced by heterogeneously catalyzed processes. Heterogeneous catalysis is also used extensively in environmental processes. Every car now has a heterogeneous catalytic converter in its exhaust system to remove toxic fumes. Heterogeneous catalysis is used to clean flue gases from power plants and to remove toxic gases or odors from industrial production. The use of heterogeneous catalysts to remove sulfur compounds from oil products and to clean flue gases from power plants are the primary reasons for the considerable decrease in the amount of acid rain in recent years.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement