National Academies Press: OpenBook
« Previous: 5 Analysis of the Catalysis Science Program Portfolio
Suggested Citation:"6 Findings and Recommendations." National Research Council. 2009. Catalysis for Energy: Fundamental Science and Long-Term Impacts of the U.S. Department of Energy Basic Energy Sciences Catalysis Science Program. Washington, DC: The National Academies Press. doi: 10.17226/12532.
×
Page 89
Suggested Citation:"6 Findings and Recommendations." National Research Council. 2009. Catalysis for Energy: Fundamental Science and Long-Term Impacts of the U.S. Department of Energy Basic Energy Sciences Catalysis Science Program. Washington, DC: The National Academies Press. doi: 10.17226/12532.
×
Page 90
Suggested Citation:"6 Findings and Recommendations." National Research Council. 2009. Catalysis for Energy: Fundamental Science and Long-Term Impacts of the U.S. Department of Energy Basic Energy Sciences Catalysis Science Program. Washington, DC: The National Academies Press. doi: 10.17226/12532.
×
Page 91
Suggested Citation:"6 Findings and Recommendations." National Research Council. 2009. Catalysis for Energy: Fundamental Science and Long-Term Impacts of the U.S. Department of Energy Basic Energy Sciences Catalysis Science Program. Washington, DC: The National Academies Press. doi: 10.17226/12532.
×
Page 92
Suggested Citation:"6 Findings and Recommendations." National Research Council. 2009. Catalysis for Energy: Fundamental Science and Long-Term Impacts of the U.S. Department of Energy Basic Energy Sciences Catalysis Science Program. Washington, DC: The National Academies Press. doi: 10.17226/12532.
×
Page 93
Suggested Citation:"6 Findings and Recommendations." National Research Council. 2009. Catalysis for Energy: Fundamental Science and Long-Term Impacts of the U.S. Department of Energy Basic Energy Sciences Catalysis Science Program. Washington, DC: The National Academies Press. doi: 10.17226/12532.
×
Page 94

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

6 Findings and Recommendations After careful review of the Catalysis Science Program’s research port- folio (grant titles, abstracts, individual researchers), especially for the fiscal years (FYs) 1999 to 2007, the committee concludes that the program has done well with its investment in catalysis basic research. The program’s success can be attributed to key management decisions during the past eight years that have led to a current funding distribution that advances basic catalysis science in gen- eral and keeps the development of energy-related technologies developments as a long-term goal. The program has maintained support for many well- established and world-renowned leaders in catalysis, and, at the same time, has brought in many new researchers. The Catalysis Science Initiative (CSI) has been a particularly effective mechanism for bringing to the program new funds, new researchers, and innovative research topics—especially in heterogeneous catalysis. However, there are variations in the quality and relevance of the re- search in the program portfolio, as summarized in the committee’s main findings and recommendations given below. FINDINGS The Catalysis Science Program portfolio is distributed between the two main categories of catalysis: heterogeneous and homogenous (see Table 3.1), each of which is assessed separately below. The committee has made this dis- tinction for convenience, based on the traditional division in catalysis. How- ever, researchers are increasingly crossing the traditional barriers between het- erogeneous and heterogeneous catalysis, blurring the distinction between the two (see the discussion on Contractor Meetings in Chapter 4), which the com- mittee views as a definite positive development. 89

90 CATALYSIS FOR ENERGY Heterogeneous Catalysis Heterogeneous catalysis accounts for the largest portion of the portfo- lio, and for the past eight years (FY 1999 to FY 2007), the program has made substantial progress in its support of the experimental and theoretical fundamen- tal understanding of multiphasic (heterogeneous) catalytic systems, surfaces, and nanoscale structures. Contributions of the portfolio to national energy goals are also discussed where appropriate. Traditional Heterogeneous Catalysis grants are awarded to individual investi- gators. These grants have been indispensable in establishing a long-term funding basis for several leading U.S. researchers in the field. The portfolio is highly important to research on energy efficiency and on alternative energy solutions. Pioneering work has been conducted in the areas of short-residence-time reac- tors; basic and acidic properties of catalysts using various probes and spectro- scopic techniques; and aqueous-phase reforming of biomass for energy pur- poses. Surface Science grants focus on achieving a better understanding of heteroge- neous catalytic surfaces. Since its inception, the Catalysis Science Program has supported U.S. leaders in surface science and is now seeing a second generation of principal investigators, many of whom were graduate and postdoctoral stu- dents of the science’s pioneers. During the past decade, the principal investiga- tors in the surface science subarea have made numerous contributions to the mechanistic and structural understanding of catalytic reactions, which continue to advance catalysis of energy processes. Examples of this work include hydro- genation and dehydrogenation, reforming, selective oxidation, heteroatom re- moval, surface photochemistry and catalysis, structure and dynamics of catalyst surfaces, and bimetallic and alloy systems. The work is the foundation of the grand challenge to “Understand Mechanisms and Dynamics of Catalyzed Trans- formations,” which is articulated in the recent report Basic Research Needs in Catalysis for Energy workshop. Research and researchers funded by surface science grants also have contributed substantially to the growth of nanoscience and theory. Historically, much of heterogeneous catalysis and the research supporting it have been at the nanoscale. However, the increased and broader focus on nanoscience at the na- tional level has changed the emphasis in surface science. During the most recent three-year period, approximately one-half of the projects focused primarily on surface reaction mechanisms, and the other half focused more on surface struc- ture. Nanoscience grants focus on emergent properties at the nanoscale. Funding for these grants began in 2001 as a result of the National Nanotechnology Initiative (NNI). Most of the NNI-funded work concentrates on the synthesis of novel

FINDINGS AND RECOMMENDATIONS 91 single-site heterogeneous catalysts, nanoparticle catalysts, or new materials that might lead to a new family of catalysts. New materials are explored through new synthesis schemes that are used to make catalytic porous solids or by incorporat- ing catalytic species into solid supports. Ten awards were originally funded un- der the NNI, and seven of them were still being funded in 2007. Overall, the new influx of funding for the Catalysis Science Program under the NNI has led to funding of several new investigators. Catalysis Science Initiative (CSI) grants were first awarded in 2003 and were given to multi-investigator, multidisciplinary teams mainly involved in hetero- geneous catalysis research. Few grants have been awarded for research in ho- mogeneous catalysis and biocatalysis, despite the initiative’s broader goal to develop “combined experimental and theoretical approaches to enable molecu- lar-level understanding of catalytic reaction mechanisms.” Although the 11 programs currently funded by the CSI are less than six years old, they already represent approximately 20 percent of the heterogeneous catalysis portfolio and have been successful in attracting and supporting investigators new to the field. This record suggests that the CSI has added value to the Catalysis Science Pro- gram and to the field of catalysis. Theory grants are focused on theory, modeling, and simulation. Grants in other categories include theory but not as a main focus. Because the field is new, sev- eral grants have been used to build programs. The catalysis theory portfolio is considered to be of a high international standard. The list of grantees includes most of the leading U.S. researchers in the field. However, the current portfolio is somewhat lacking in the development of theoretical and computational meth- ods, as well as in work focused on homogeneous catalysis and biocatalysis. Hydrogen Fuel Initiative (HFI) grants focus on hydrogen production, storage, and use and involve mainly electrocatalysis. Many of the HFI-funded projects study the fundamental aspects of catalysis related to specific applications, such as catalysis for fuel cells or for reforming. Because the first year of funding was FY 2005 for most HFI electrocatalysis proposals and FY 2007 for other projects, it is difficult to assess the impact of this body of work. However, the collection of electrocatalysis and catalysis research in the portfolio is good. The research mostly reflects the technical challenges that arise when fuel hydrogen is pro- duced from hydrocarbon resources (for example, carbon monoxide poisoning on platinum electrodes and the use of catalysts for reforming methane) rather than from electrolysis of water by solar or nuclear means. In addition, and similar to the CSI, the new HFI-funded projects have attracted new researchers to the Ca- talysis Science Program.

92 CATALYSIS FOR ENERGY Homogeneous Catalysis Grants for research in homogeneous catalysis constitute a smaller por- tion of the current Catalysis Program portfolio but have had an important impact on the Catalysis Science Program. For FY 2007, the grants were divided into two main research topics: approximately one-half involved C-H activation, and the other half involved mostly inorganic synthesis and inorganic single sites and polymerization. The committee also assessed the research topics of homogene- ous catalysis in organic synthesis and in biorelated projects. Single-Site Polymerization grants have made significant contributions to the understanding of fundamental catalysis. Single-site polymerization is one of the most important advances in catalysis of the past 25 years. The Catalysis Science Program has strongly supported this activity since its inception and must be credited with having a great impact on its development. This is an excellent ex- ample of the value of basic research and of how funding of productive, well- qualified individual principal investigators can lead to a successful commercial result of huge importance to chemical production and energy utilization. C-H Activation and Functionalization grants have been a part of the Catalysis Science Program for a long time. The program has made major contributions to successes in fundamental research in this area. The ultimate goal of research in C-H activation catalysis is to find catalysts that will incorporate C-H activation into hydrocarbon-conversion technology, which will lead to functionalized compounds needed for feedstocks in the chemical industry or to the conversion of methane into useful liquid transportation fuels. However, the program has limited its impact by focusing its support on studies of only the first step in C-H activation. Simple functionalization of hydrocarbons after C-H activation has not been realized, and new ideas are needed. Designs based on alkyl group transfer to a second metal or on bifunctional ligands are possibilities. The study of C-H functionalization in biological processes also could help to inform re- search in this area. Homogeneous Catalysis in Organic Synthesis grants are a very small but still important part of the Catalysis Science Program portfolio. For example, the high inherent selectivity of homogeneous catalysts allows the production of molecules of one desired handedness, or enantioselectivity (asymmetric cataly- sis), which is critical for the synthesis of fine chemicals, pharmaceuticals, agri- cultural chemicals, and electronic material. The selectivity of these catalysts presents the potential to conserve resources, increase energy efficiency, and re- duce waste. Biorelated grants are another small but important part of the Catalysis Science Program portfolio. Biological processes provide understanding of important

FINDINGS AND RECOMMENDATIONS 93 catalytic reactions such as C-H functionalization. Many projects in the homoge- neous catalysis portfolio are described as bioinspired, but there are only a few examples of research that carefully analyzes the mechanistic implications of enzyme active sites and the requirements met by the surrounding protein matrix. Several of the program’s principal investigators are active in bioinorganic chem- istry but receive support for the work from other government agencies. RECOMMENDATIONS The Catalysis Science Program should continue its current approach to funding decisions. Multi-investigator and interdisciplinary programs such as the Catalysis Science Initiative should remain a part of the portfolio, but future teams might benefit from the inclusion of more homogeneous and biocatalysis researchers that are interested in energy solutions. The program should utilize future funding initiatives as a mechanism to maintain the balance of the program and to explore new approaches to carrying out research. Influences on the Portfolio The Catalysis Science Program should continue to broaden participa- tion in its contractor meetings and other activities. Non-DOE sponsored work- shop organizers and grantees funded by other BES programs should be invited to attend the Catalysis Science Program’s activities to provide a more diverse influence on the portfolio. This is particularly important in the development of research directions that will have a long-term impact on the program. Principal Investigators The Catalysis Science Program should continue on its current path of maintaining support for productive, long-term researchers and of recruiting new researchers. The program also must ensure that the best researchers are identi- fied and supported—this is especially important for heterogeneous catalysis be- cause program funding is essential to the success of a heterogeneous catalysis researcher (see Chapter 3). The balance of funding for individual investigators and small groups should also be maintained. Heterogeneous Catalysis The distribution of the Catalysis Science Program’s heterogeneous ca- talysis portfolio should be changed slightly. Studies on high surface area cata-

94 CATALYSIS FOR ENERGY lysts, surface science, nanoscience, and electrocatalysis should be maintained, but there should be a stronger emphasis on studies that explore catalyst design and new synthesis methods, unique reactor systems, unique characterization techniques, and completely new chemical reactions. Support for the develop- ment of theoretical methods also should feature more prominently in the portfo- lio. Homogeneous Catalysis A balanced homogeneous catalysis portfolio should extend beyond in- dividual mechanistic steps to include greater development of new catalytic sys- tems and reactions. The portfolio can be improved by pursuing opportunities in C-H bond functionalization, new approaches to transition-metal catalysis, and electrochemical catalysis (small molecule homogeneous catalysts supported on electrodes). In addition, there should be a greater emphasis on reducing highly oxidized compounds such as bioderived materials into fuels and feedstocks, and on bioinspired catalytic processes.

Next: Appendix A: Statement of Task »
Catalysis for Energy: Fundamental Science and Long-Term Impacts of the U.S. Department of Energy Basic Energy Sciences Catalysis Science Program Get This Book
×
Buy Paperback | $46.00 Buy Ebook | $36.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

This book presents an in-depth analysis of the investment in catalysis basic research by the U.S. Department of Energy (DOE) Office of Basic Energy Sciences (BES) Catalysis Science Program. Catalysis is essential to our ability to control chemical reactions, including those involved in energy transformations. Catalysis is therefore integral to current and future energy solutions, such as the environmentally benign use of hydrocarbons and new energy sources (such as biomass and solar energy) and new efficient energy systems (such as fuel cells).

Catalysis for Energy concludes that BES has done well with its investment in catalysis basic research. Its investment has led to a greater understanding of the fundamental catalytic processes that underlie energy applications, and it has contributed to meeting long-term national energy goals by focusing research on catalytic processes that reduce energy consumption or use alternative energy sources. In some areas the impact of the research has been dramatic, while in others, important advances in catalysis science are yet to be made.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!