The resulting technology perspectives were collected and synthesized into 100 papers by the Scanning Centre and the IFTF as they looked at potential developments in the field of science and technology over the next 50 years. The forecast comprised a short “outlook” and an Accompanying “snippet”; a set of overarching themes; and a map of the future. One example of a single-sentence outlook and its “snippet”—here, radio frequency identification—is as follows:

Tracking objects is made easy by RFID

Radio Frequency Identification Devices (RFID) tagging systems will probably be widely used by government, industry, retailers and consumers to identify and track physical objects by 2015.

This will vastly improve corporate inventory management, increase the efficiency of logistics, reduce loss (including through theft) at all stages between manufacturer and end-user, facilitate scientific research in hospitals by making it easier to track patients and lab samples, and make mislaid objects a thing of the past as individuals will be able to “google” and hence locate objects.

IFTF identified six science and technology (S&T) themes from the forecast:

  • Small world,

  • Intentional biology,

  • Extended self,

  • Mathematical world,

  • Sensory transformation, and

  • Lightweight infrastructure.

It also identified three meta themes: democratized innovation, transdisciplinarity, and emergence. The map of the future in Figure 6-1 was created by IFTF.

The results of the forecast were published both in a report and on the Horizon Scanning Centre’s Web site. They were then were used to test strategic assumptions and to identify contingency trigger points to monitor. An impact audit was performed that weighed the identified risks against existing projects and priorities. The results were used to generate new questions and create fresh strategic priorities that could be fed back into the forecasting system. See Figure 6-2 for a diagram of the Delta Scan forecasting process.

Strengths and Weaknesses

A strength of this forecasting platform is that its goals, process, and approach were well defined from inception. It was designed to ensure that the architecture of the underlying data store could support and produce a forecast. The forecasting process was straightforward, practical, and used established forecasting methods such as interviews with experts and professionally led workshops. The system was developed with a modest level of resources and called on professional forecasters (IFTF staff) for help. Participants were drawn from areas of expertise that corresponded to stakeholders’ priorities. The output of the forecast was clear and concise and helped to drive decision making, program direction, and resource allocation. In addition, the resulting time line and wiki are useful to future planners and forecasters. The system, though not persistent, was designed to be iterative.

The system’s potential weaknesses include its lack of support for languages other than English, its emphasis on data of local rather than global origin, the exclusive use of expert views, and the single-dimensionality of the resulting forecast, which failed to offer alternatives to its vision of the future. The system was designed as an iterative platform for forecasting, but the time between forecasts is relatively long, and new signals do not immediately impact the forecast. The system requires the discrete linear processing of each step (goal setting, process design, interviews and scans, data normalization and preparation, workshops, synthesis, and audit of impact), and within each forecasting cycle all steps must be completed before a new forecast is produced. The system is therefore not designed to be persistent. While the resulting forecast was insightful, it was not particularly surprising. Topic areas

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement