Accordingly, motivations related to a particular aspect of science can shift over time. A young person who eagerly absorbs information about sea creatures simply out of a keen interest in the topic may, a few years later, be drawn to expand that knowledge in college in order to obtain the proper credentials for a career in marine biology. Decades later, this same person may be drawn into further study of ocean life simply for the pleasure of remaining current with up-to-date knowledge.

In this chapter, we explore some of the ways science learning varies with age. It is important to remember that, within these broad trends, individuals can differ tremendously. Their learning is influenced by prior experiences, gender, ethnicity, and other aspects of life that have nothing to do with age. And although the nature and extent of science-related learning may vary considerably from one life stage to another, most people develop relevant capabilities and intuitive knowledge from the days immediately after birth and expand on these in later stages of their life. In this sense, science learning in informal environments is truly a lifelong enterprise.2

CHILDREN AND YOUTH

At birth, children begin to build the basis for science learning. By the end of the first 2 years of life, individuals have acquired a remarkable amount of knowledge about the physical aspects of their world.3 This “knowledge” is not formal science knowledge, but rather a developing intuitive grasp of regularity in the natural world. It is derived from the child’s own experimentation with objects, rather than through planned learning by adults. In accidentally dropping something from a high chair or crib, for example, the child begins to recognize the effects of gravity. Although these early experiences do not always lead to accurate interpretations or understandings of the physical world, research has shown that these early naïve conceptions influence later science learning.4

As a child masters language and becomes more mobile, opportunities for science learning expand. Informal and unplanned discoveries of scientific phenomena (e.g., scrutinizing bugs in the backyard) are supplemented by more programmatic learning (e.g., bedtime reading by parents, family visits to museums or science centers, science-related activities in child care or preschool settings). Even in these initial years of life, children display preferences for some topics over others. Such preferences can evolve into specific science interests (e.g., dinosaurs, insects, flight, mechanics) that can be nurtured when parents or others provide experiences or resources related to those interests.5



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement