consumption in non-OECD countries was projected to increase by 2.1 percent per year over the same period, with the most rapid growth occurring in China and India.

As of 2006, industry accounted for 33 percent of the primary energy consumed in the United States and 28 percent of carbon dioxide (CO2) emissions (EIA, 2008). Overall, the quantity of energy used by U.S. industries is huge, estimated at 32.6 quadrillion British thermal units (quads) of primary energy in 2006 at a cost of $205 billion. About 5 quads, or 21 percent of this total, was for nonfuel uses of coal, gas, and oil—for example, the use of oil refining by-products in asphalt, natural gas employed as a feedstock for petrochemicals, and petroleum coke used in the production of steel (EIA, 2009b). U.S. industries use more energy than the total energy used by any other Group of Eight (G8) nation and about half of the total energy used by China (DOE, 2007b).

The average annual rate of growth of energy in the U.S. industrial sector is projected to be 0.3 percent out to 2030, while CO2 emissions from U.S. industry are projected to increase more slowly, at 0.2 percent annually (EIA, 2008). These low rates are due partly to the presumed introduction of energy-efficient technologies and practices in industry. They also reflect the projected restructuring of the economy away from energy-intensive manufacturing and toward service and information-based activities. Many of the commodities that were once produced in the United States are now manufactured offshore and imported into the country. The energy embodied in these imported products is not included in the standard energy metrics published by the Energy Information Administration (EIA) of the Department of Energy (DOE). According to an analysis by Weber (2008), products imported into the United States in 2002 had an embodied energy content of about 14 quads, far surpassing the embodied energy of exports from the United States (about 9 quads).

The most energy-intensive manufacturing industries are those producing metals (iron, steel, and aluminum); refined petroleum products; chemicals (basic chemicals and intermediate products); wood and glass products; mineral products such as cement, lime, limestone, and soda ash; and food products. As shown in Figure 4.1, these industries are responsible for more than 70 percent of industrial energy consumption. Industries that are less energy-intensive include the manufacture or assembly of automobiles, appliances, electronics, textiles, and other products.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement