the coastal communities after the earthquake is felt. In addition, tsunami observations demonstrate an increase in wave height with proximity to the source, resulting in extensive coastal flooding by a near-field tsunami. Consequences of a near-field tsunami are far greater for any given location.

Far-field tsunamis afford hours of advance notice for evacuation and are likely to have smaller wave heights than those in the tsunami’s near field. However, the farther a coastal community from the earthquake source the less likely it is to have felt the earthquake and the more dependent it is on an instrumental detection system to provide warnings. Timely and accurate warnings are required to implement orderly evacuations and to avoid frequent unnecessary evacuations, which can be costly. The National Science and Technology Council (NSTC) report (2005) concludes that “the challenge is to design a tsunami hazard mitigation program to protect life and property from two very different types of tsunami events.”

GOALS AND SCOPE OF THIS REPORT

The 2004 Indian Ocean tsunami, spurred two congressional acts intended to reduce losses of life and property from future tsunamis. The Emergency Supplemental Appropriations Act for Defense, the Global War on Terror, and Tsunami Relief, 2005 (P.L. 109-13), included $24 million to improve tsunami warnings by expanding tsunami detection and earthquake monitoring capabilities. This Act was followed in 2006 by the Tsunami Warning and Education Act (P.L. 109-424), which directs the National Oceanic and Atmospheric Administration (NOAA) to strengthen the nation’s tsunami warning system (TWS), work with federal and state partners toward the mitigation of tsunami hazards, establish and maintain a tsunami research program, and assist with efforts to provide tsunami warnings and tsunami education overseas.

Section 4(j) of the Tsunami Warning and Education Act calls upon the National Academy of Sciences (NAS) “to review the tsunami detection, forecast, and warning program established under this Act to assess further modernization and coverage needs, as well as long-term operational reliability issues.” In response, NOAA asked the NAS to assess options to improve all aspects of the tsunami program. This request is reflected in the first part of the committee’s charge (see Appendix B) and accordingly focuses on efforts on tsunami detection, forecasting, and warning dissemination.

The NAS, in accepting this charge and in consultation with NOAA, broadened the review’s scope to include an assessment of progress toward additional preparedness efforts to reduce loss of life and property from tsunamis in the United States as part of the National Tsunami Hazard Mitigation Program (NTHMP). The main rationale for this broadened scope was to address Section 5(a) in P.L. 109-424, which called for “a community-based tsunami hazard mitigation program to improve tsunami preparedness of at-risk areas in the United States and its territories.” Such a tsunami hazard mitigation program requires partnership among federal, state, tribal, and local governments. Its strategies include identifying and defining tsunami hazards, making inventories of the people and property in tsunami hazard zones, and providing the public with knowledge and infrastructure for evacuation, particularly for near-field



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement