science and mathematics. It also inhibits the development of technological and scientific literacy, which are essential to informed citizens in the 21st century. The committee believes that increasing the visibility of technology and, especially, engineering in STEM education in ways that address the interconnections in STEM teaching and learning could be extremely important. Ideally, all K–12 students in the United States should have the option of experiencing some form of formal engineering studies. We are a long way from that situation now.

In the committee’s vision for STEM education in U.S. K–12 schools, all students who graduate high school will have a level of STEM literacy sufficient to (1) ensure their successful employment, post-secondary education, or both, and (2) prepare them to be competent, capable citizens in our technology-dependent, democratic society. Because of the natural connections of engineering education to science, mathematics, and technology, it might serve as a catalyst for achieving this vision. The committee was not asked to determine the qualities that characterize a STEM-literate person, but this would be a worthwhile exercise for a future study.

RECOMMENDATION 7. The National Science Foundation and the U.S. Department of Education should support research to characterize, or define, “STEM literacy.” Researchers should consider not only core knowledge and skills in science, technology, engineering, and mathematics, but also the “big ideas” that link the four subject areas.

Pursuing the goal of STEM literacy in K–12 schools will require a paradigm shift by students, teachers, administrators, textbook publishers, and policy makers, as well as by the many scientists, technologists, engineers, and mathematicians involved in K–12 education. However, the committee believes that, as a result of that shift, students would be better prepared for life in the 21st century and would have the tools they need to make informed career decisions or pursue post-secondary education. In addition, integrated STEM education could improve teaching and learning in all four STEM subjects by forcing a reevaluation of the currently excessive expectations for STEM teachers and students. The committee is not suggesting a “dumbing-down” process. On the contrary, this is a call for more in-depth knowledge in fewer key STEM areas and for more time to be devoted to the development of a wider range of STEM skills, such as engineering design and scientific inquiry.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement