attribute to the way the design activity is structured to support learning for understanding in the context of solving a problem. Roth (2001) suggests that design activities, which present distributed representations of ideas, can stimulate discussions about science concepts. Ideas represented through design can then be inspected and tested.

Penner et al. (1998) explored how the design by elementary students of a physical model of an elbow can support science and mathematics learning related to the mechanics of motion. The success of the project depended on students having multiple opportunities to engage in and discuss their design experiences, teachers’ use of analogies, and sense-making based on data collection and interpretation. Redesign gives students a chance to explore connections between science and design, to test their ideas, and to decide how to correct their designs and then adjust the corresponding understanding of the relevant scientific principle or concept (Sadler et al., 2000).

In summary, the available evidence suggests that under certain circumstances, engineering education can boost learning and achievement in science and mathematics. These effects may be more significant for certain populations, particularly underrepresented minority students. However, the positive effects are not universal and research has not clearly established the causal mechanism(s) to explain such benefits when they occur.

Increased Awareness of Engineering and the Work of Engineers

This goal, improving students’ awareness of engineering and the work of engineers, can be of great benefit to a society, because engineering is central to technology development, and technology influences the well-being of everyone. Conversely, a lack of awareness of engineering and misconceptions or ignorance about what engineers do can be detrimental to a society. On a practical level, young people who believe engineers drive trains or repair car engines or who have negative stereotypes of the profession are unlikely ever to consider studying engineering or pursuing it as a career. If enough youngsters feel this way, it may become increasingly difficult to attract and retain a technically proficient workforce. Generally, individuals who do not have a basic idea of what engineers do are unlikely to appreciate how engineering and science contribute to economic development, quality of life, national security, and health care; such awareness is one aspect of technological literacy (NAE and NRC, 2006).

The engineering community, including engineering professional societies, schools of engineering, and firms that depend heavily on engineering



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement