5
Enhancing Surveillance to Detect and Characterize Infectious Disease Threats

Infectious disease surveillance is conducted at all levels of government, with most surveillance legally authorized and performed by a heterogeneous set of state and local public health departments that voluntarily collaborate with the federal government (see Chapter 4). In practice, many separate systems are engaged in activities that contribute to public health surveillance at local, state, and national levels.

The multiplicity of surveillance systems (many of them monitoring specific diseases), the unevenness of their capabilities, and both the strengths and limitations of current approaches to surveillance through public health and health care systems have been the subject of many different studies, task forces, commissions, and other efforts both to assess the status of the situation and to propose changes to remedy current problems and bring about improvements (e.g., CDC, 2001; Baker and Koplan, 2002; IOM, 2003; Baker et al., 2005; Lurie et al., 2006).1 These analyses share some broad themes.

  • The nation is facing an increased threat from infectious disease outbreaks, both intentional from terrorists and natural from emerging and re-emerging pathogens.

  • The nature of many bioterror threats (e.g., a high degree of infectiousness or severe morbidity, short incubation period, decreasing effectiveness of

1

As this committee began its work, an effort to develop a National Biosurveillance Strategy, mandated by Homeland Security Presidential Directive 21 (HSPD-21), was getting under way through the coordination efforts of the Centers for Disease Control and Prevention (CDC, 2008a). This effort is described below.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 119
5 Enhancing Surveillance to Detect and Characterize Infectious Disease Threats I nfectious disease surveillance is conducted at all levels of government, with most surveillance legally authorized and performed by a heteroge- neous set of state and local public health departments that voluntarily collaborate with the federal government (see Chapter 4). In practice, many separate systems are engaged in activities that contribute to public health surveillance at local, state, and national levels. The multiplicity of surveillance systems (many of them monitoring spe- cific diseases), the unevenness of their capabilities, and both the strengths and limitations of current approaches to surveillance through public health and health care systems have been the subject of many different studies, task forces, commissions, and other efforts both to assess the status of the situ- ation and to propose changes to remedy current problems and bring about improvements (e.g., CDC, 2001; Baker and Koplan, 2002; IOM, 2003; Baker et al., 2005; Lurie et al., 2006).1 These analyses share some broad themes. • The nation is facing an increased threat from infectious disease outbreaks, both intentional from terrorists and natural from emerging and re-emerging pathogens. • The nature of many bioterror threats (e.g., a high degree of infectious- ness or severe morbidity, short incubation period, decreasing effectiveness of 1 Asthis committee began its work, an effort to develop a National Biosurveillance Strategy, mandated by Homeland Security Presidential Directive 21 (HSPD-21), was getting under way through the coordination efforts of the Centers for Disease Control and Prevention (CDC, 2008a). This effort is described below. 

OCR for page 119
0 BIOWATCH ANd PuBlIC HEAlTH SuRVEIllANCE treatment as the disease progresses) necessitates a very rapid medical re- sponse to prevent most of the casualties. • Local and state public health agencies play a vital role in monitor- ing disease trends and outbreaks but do not all have sufficient staff, tools, and resources to be as effective as they need to be for rapid detection and response to outbreaks (e.g., adequate numbers of trained personnel, mod- ernized information and communication systems, access to and capacity to fully use epidemiologic data systems and analysis tools, expanded and modernized public laboratories). • The sharing of surveillance information between the health care system and state and local public health agencies needs to be improved to detect health threats and detect them earlier. • Automated systems to improve the sharing of surveillance infor- mation between the health care system and state and local public health agencies to detect widespread outbreaks earlier and manage them better also need to be improved. • The integration of human health information with information about infectious agents derived from surveillance of animal disease, water quality, and air quality—or “biosurveillance”—is needed to defend against bioterrorism and natural pandemics. With its focus on the BioWatch system and a short timeframe in which to conduct its work, this committee acknowledges the large number of com- pleted and ongoing efforts over the past decade, especially since 2001, to improve infectious disease surveillance and detection of disease outbreaks. In this chapter, the committee describes opportunities it has identified for further enhancing the detection of public health threats, especially threats from biological hazards, including bioterrorism. Many of the enhance- ments derive from the increasing digitalization of health information and resulting opportunities for better information technology systems and tools to aid case recognition, reporting, and analysis of information. A central and desirable aspect of the enhancements—in the context of bioterrorism surveillance—is to improve the timeliness of individual case and outbreak recognition, reporting, and analysis of information. The opportunities for enhancement of surveillance through the public health and health care systems fall into broad and overlapping categories of improving legally mandated reporting, establishing automated linkages between health care information systems and public health systems, increas- ing laboratory and diagnostic testing capacity, and promoting information integration and knowledge sharing. These enhancements bring with them the risk of information overload, which must also be addressed through improved information and knowledge management (the field of public health informatics) (Yasnoff et al., 2000). Information tools to manage

OCR for page 119
 ENHANCINg SuRVEIllANCE FOR INFECTIOuS dISEASES such floods of information must be specifically designed for the end user to ensure that salient information is correctly interpreted in a timely manner (Endsley et al., 2003). Skilled staff and other infrastructure resources are needed to use these systems effectively on a day-to-day basis and to evaluate and respond to these additional or enhanced information streams. Automated connections between health care and public health systems are unlikely to be fully ef- fective in the absence of mutual trust, deserved respect for one another’s expertise, and effective personal communication links between the health care providers and public health officials, particularly at the local level. In the final portion of the chapter, the committee provides recommendations for making the most of the enhancements and providing critical baseline capabilities to benefit from them. LEGALLY MANDATED REPORTING As discussed in Chapter 4, each state has laws requiring health care providers, laboratories, and other entities to report certain diseases and other conditions to local or state public health authorities. Typically, state laws also mandate reporting of unusual clusters of disease or outbreaks, even if the disease in question is not on the list of reportable conditions. The Council of State and Territorial Epidemiologists (CSTE) has pro- posed the establishment of a common list of nationally notifiable conditions to be reported to all levels of the public health system (CSTE, 2007). CSTE has also proposed establishment of a list of “immediately notifiable condi- tions” in addition to routinely notifiable conditions (CSTE, 2008). Imme- diately notifiable conditions would be those that might constitute a “public health emergency of international concern,” as defined in International Health Regulations (WHO, 2008). They include such conditions as small- pox, a novel strain of influenza, wild-type polio, and severe acute respira- tory syndrome (SARS). The list also includes diseases caused by pathogens in Category A on the Centers for Disease Control and Prevention’s (CDC’s) list of possible bioterrorism agents and toxins (e.g., anthrax, plague, tula- remia). These immediately notifiable diseases have been largely eliminated in the United States (e.g., measles) or globally, or are otherwise designated by the Nationally Notifiable Disease process. In addition, standardized disease investigation forms with required data elements are needed for all notifiable diseases. CSTE and CDC are currently working together to establish an updated list of Nationally Notifiable Con- ditions, which will include nationally standardized case definitions,2 forms, 2 Many case definitions are now available at http://www.cdc.gov/ncphi/disss/nndss/casedef/ case_definitions.htm.

OCR for page 119
 BIOWATCH ANd PuBlIC HEAlTH SuRVEIllANCE and disease-specific codes and data elements, so that information can be readily and quickly shared, compared, and analyzed. This standardized ap- proach to reporting the diseases of greatest concern is important, because a biothreat or naturally emerging infectious disease may strike more than one location, or terrorists may target an airport, state fair, sports arena, or other place with people travelling to and from multiple jurisdictions. Electronic Laboratory Reporting Systems Electronic reporting of laboratory results to public health officials can improve the timeliness and completeness of information regarding notifi- able diseases and other agents of potential concern (Effler et al., 1999; Panackal et al., 2002; Babin et al., 2007). Such systems can reduce the delays and incompleteness of reporting based on busy laboratorians hav- ing to fill out and submit paper forms by mail or fax. While the benefits of more prompt reporting will vary by disease, depending on the urgency of beginning prophylaxis or treatment, electronic reporting can at least shorten one critical step in the transfer of information about the occur- rence of notifiable diseases (CDC, 2008b). As of late 2008, about 85 per- cent of the states have some capacity for electronic laboratory reporting (ELR) (TFAH, 2008).3 In order for ELR systems to be deployed in a jurisdiction, standardized information exchange is needed between laboratories and public health reporting systems (i.e., standard vocabularies and codes and electronic messaging and transmission formats). The main impediment is the time required for both laboratory information technology (IT) staff and public health staff to map out a customized interface from each laboratory in- formation system to the standardized format required for each notifiable disease, especially if a disease is confirmed by more than one test. This inter- face problem is reduced when regional health information exchanges (HIEs) electronically transmit information, including laboratory reports, between multiple users across the community. These information exchange systems can be politically and technically challenging, but they offer the possibility of creating a limited set of interfaces rather than unique interfaces for every entity and every application. Thus they can speed the process of establishing ELR in a community where it is not yet established. ELR has substantially increased the speed of delivery, the number of case reports, and the quality 3 A 2007 survey of the 50 states, the District of Columbia, and five large cities (New York, Los Angeles, Denver, Chicago, and Indianapolis) found that 38 (68 percent) had at least partially operational ELRs, 9 (16 percent) were testing an ELR system, and 6 (11 percent) were planning an ELR system. Only 3 were not planning, testing, or operating an ELR system (Magnuson, 2008).

OCR for page 119
3 ENHANCINg SuRVEIllANCE FOR INFECTIOuS dISEASES of patient-level information (e.g., address, demographics) provided in case reports (Overhage et al., 2008). Better case ascertainment from ELR also creates higher information flow and workload demands on public health staff. For this to translate into better public health response, sufficient numbers of skilled public health professionals and high-quality information management systems are needed to quickly assess if reports meet disease case criteria and to implement ap- propriate case and contact investigations. Notifiable Disease Reporting by Health Care Providers As discussed in Chapter 4, all states mandate that physicians, veteri- narians, laboratories, and other health care providers report certain health conditions—mainly infectious diseases—to their local or state department of public health, or both. Although health care providers are generally aware of the requirement to report, compliance is a problem (Jajosky and Groseclose, 2004). Providers may not be fully aware of the scope of reporting requirements, may assume that others (such as the laboratory or hospital infection control staff) will report, or be too busy with patient care to stop work and report a disease. Some may also doubt that their input is necessary or would be used effectively. The challenge of complying with reporting requirements is even greater in clinical environments such as busy hospital emergency departments (EDs) and acute care clinics. Because these sites provide readily accessible care 24 hours a day, clinicians working in these settings may be the first to encounter patients with signs or symptoms of illness from a bioterror agent or an emerg- ing infectious disease (IOM, 2007). The crowded conditions that characterize many EDs are also a problem, because they can extend the waiting time to see a physician and promote patient-to-patient spread of virulent infectious diseases, such as SARS (Augustine et al., 2004; Cass, 2005). Clinicians work- ing in these environments are expected to diagnose and treat a wide range of conditions of widely varying severity, from immediately life-threatening to chronic. The frequent interruptions, need for multitasking, and circadian stress of shift work reduce the probability that a busy emergency physician or nurse will quickly report a diagnosis. In addition, the results of microbio- logic tests may not be available for hours or days after they are submitted. Reporting rates from EDs could be enhanced if steps were taken to raise awareness among clinicians of the importance of case reports in monitoring public health and identifying disease outbreaks, or to provide additional sup- port from infectious disease physicians or infection control staff who have somewhat more time to review differential diagnostic information. Recognizing and diagnosing unusual diseases in EDs and acute care clinics is also a challenge. For bioterrorism preparedness, primary care provid-

OCR for page 119
 BIOWATCH ANd PuBlIC HEAlTH SuRVEIllANCE ers and key specialists (e.g., in emergency medicine, infectious disease, dermatology, radiology, and microbiology) need to acquire and maintain “front of mind” awareness of the clinical manifestations of infection with Category A and B agents, which for many clinicians may be a once-in-a- lifetime diagnosis. Health alert systems, such as Health Alert Networks (HANs) located at CDC and all state and some local health departments, which broadcast email and faxes to health care providers and systems, have been put in place to rapidly notify providers of potential or breaking public health emergencies, but the task of signing up all providers is not complete in most places. In the event of an outbreak, HAN alerts should be used to increase the index of suspicion for providers by providing them with the specific clinical and epidemiologic criteria, public health contact information for reporting cases, and instructions for obtaining confirma- tory laboratory testing. In addition to maintaining provider outreach efforts on the require- ments for reporting of notifiable diseases, local and state public health departments should take steps to ease the burden of reporting and ensure that staff who triage calls from providers are responsive and adequately trained. These steps, which have been taken by many but still not all public health systems, include: • 24/7 toll-free call lines at the local or state health departments with the capability to rapidly connect providers with an appropriate staff person to triage their calls, including an on-call medical epidemiologist if indicated; • easy-to-use Internet-based reporting systems; and • feedback to clinicians regarding local disease trends and the impact of their reporting. Enhancing the Infection Control Professional Workforce Infection control professionals (or infection preventionists) are an im- portant human link connecting the clinical and public health sectors. They often report notifiable conditions to public health, assist clinicians with definitive diagnosis, assist public health authorities with case investiga- tion, and improve the speed and consistency of the application of infection control measures such as isolation. While common in hospitals, they are less often present in ambulatory care settings. Strengthening the system of infection control professionals across the health care system could provide an important tool to improve capacity for surveillance and response to bioterrorism or emerging infectious diseases, while simultaneously reducing health care-associated infections.

OCR for page 119
 ENHANCINg SuRVEIllANCE FOR INFECTIOuS dISEASES Electronic Death Reporting Systems Making death reporting systems electronic may speed the detection of unusual trends in mortality. Tracking causes of mortality is the oldest form of public health surveillance and has been done for centuries. Ironically, the data systems in place to track mortality in most states use the same technol- ogy employed in these earlier centuries—i.e., paper—and are therefore slow. Electronic death reporting could improve timeliness of detection of clusters of deaths, identification of cases of infectious disease that should have been reported to public health by the treating physician, and identification of seasonal trends in infectious causes of death (Fallon and Boone, 2004). In New Hampshire, death certificates are filed electronically within 24 hours of being signed by a physician. A surveillance coordinator in the New Hampshire Department of Health and Human Services reviews death certificates daily using a query developed to identify more than 50 illnesses potentially related to terrorism (Fallon and Boone, 2004). The Los Angeles coroner reports on each day’s cases to the Los Angeles County Department of Public Health (LACDPH). Of the approximately 70,800 coroner’s cases reported between 2003 and 2006, the LACDPH investigated 424, and among the investigated cases, 196 (46 percent) had an infectious disease as the cause of death. Of these infectious disease cases, 81 (41 percent) had not been properly reported prior to death, including cases of hantavirus and rabies. There were also 505 cases with causes of death attributed explicitly to reportable communicable diseases, of which more than half (56 percent) had not been previously reported (Peterson and Terashita, 2008). AUTOMATION OF HEALTH CARE INFORMATION SYSTEMS AND PUBLIC HEALTH LINKAGES Advances in IT make it possible to collect and analyze public health information more quickly, accurately, and comprehensively than is pos- sible with traditional manual methods. IT can greatly ease the demands of reporting for providers, as discussed above, especially for initiating case reports. However, additional input from clinicians is likely to continue to be necessary to complete case reports in many instances (e.g., to obtain infor- mation on patients’ modes of exposure or more nuanced information neces- sary to verify that patients meet surveillance case definitions). Electronically reported data can be more easily aggregated and analyzed for patterns that indicate a possible outbreak of naturally occurring or bioterrorism-caused disease. Early trend detection by public health can be shared with clini- cians using HAN and other notification systems, thus creating a circle of enhanced diagnosis, case reporting, infection control, and treatment.

OCR for page 119
 BIOWATCH ANd PuBlIC HEAlTH SuRVEIllANCE Clinical Decision Support Tools Many outbreaks are identified and reported by astute clinicians who encounter cases or clusters of cases with suspicious features, such as mon- keypox in 2003 (Reed et al., 2004), anthrax in 2001, West Nile virus in 1999 (Fine and Layton, 2001), and hantavirus in 1993. In fact, the most crucial step in disease detection is the first one—recognizing that an ill patient has a potentially unusual disease or disease manifestation that warrants further investigation and notification of public health officials. Although it is widely assumed that all clinicians working in busy acute care settings intrinsically possess the knowledge, skills, and means to promptly identify, isolate, and report suspicious cases, this is not necessarily so. Most health care providers—particularly those who work in EDs and other acute care settings—constantly juggle competing demands for their time and at- tention. Yet it is vital that these same clinicians promptly recognize index cases that might signify a bioterrorist attack or an emerging outbreak of a dangerous infectious disease. Traditionally, health departments and professional societies have relied on continuing education, posters, and pocket cards to educate health care professionals about the signs and symptoms of an illness caused by bioter- rorism agents and other dangerous diseases. Although these measures are useful, they are not enough (IOM, 2000). Health care providers need deci- sion support tools in their clinical environments that are designed to help them with their daily tasks (IOM, 2007). Examples include rapid dissemi- nation of paper triage screening forms for a particular disease of concern (e.g., for SARS [Foldy et al., 2004b]), computer-assisted triage systems (e.g., Dong et al., 2007; Bullard, 2008), web-based interfaces or other electronic tools to help clinicians formulate differential diagnoses and access guidance about the clinical management of patients with rare or highly dangerous diseases (e.g., Papier, 2008), and electronic medical records (EMRs) with imbedded decision prompts that remind busy clinicians to consider certain diagnoses and report particular diseases (see Recommendation 10, below). Computer-assisted triage systems, for example, could be enhanced by pro- gramming them to automatically alert the triage nurse if an ED patient has history, symptoms, or clinical signs suggestive of exposure to a bioterrorism agent or other public health threat (IOM, 2007). In addition to reducing medical errors and streamlining patient flow, routine use of decision sup- port systems should increase the likelihood that index cases of bioterror- ism or emerging infectious disease are recognized in the earliest stages of an outbreak of potential public health significance. Although diagnosis of most diseases caused by bioterrorism agents will require more information (e.g., from a physician’s examination, laboratory tests, or X-rays), the de- cision support tool may raise the index of suspicion to make appropriate

OCR for page 119
 ENHANCINg SuRVEIllANCE FOR INFECTIOuS dISEASES care more likely. This could enhance prompt reporting, use of appropriate diagnostic tests, institution of appropriate isolation measures, and swift treatment of both ill and exposed individuals. Technologies exist to assist busy ED clinicians and hospital-based adult internal medicine and pediatric specialists in making clinical decisions con- cerning prevention and monitoring guidelines, prescribing of drugs, and diagnosis and management (IOM, 2001). Studies show that clinical decision support systems can increase clinician compliance with clinical guidelines and drug selection, screening for interactions, and monitoring for adverse side effects; but their utility in improving diagnosis is still unclear, especially in the ED setting (IOM, 2007). Further development of these systems is warranted, because of their promise in improving diagnosis and treatment, but additional research on their accuracy, effectiveness, and safety is also warranted. Ideally, these tools should be modifiable and also allow for a multidi- rectional information flow. It should be possible to modify triage protocols to be specific for outbreak-related cases when warranted. And in addition to facilitating reporting of suspicious cases to the health department, they should allow the health department to alert front-line health care providers of a real or potential outbreak. For example, when a BioWatch Actionable Result (BAR) is declared or aberrancy is detected by syndromic surveillance, planners invariably want timely information from hospital EDs and other acute care providers to assess the validity of the signal. This process could be dramatically enhanced in a setting of better bilat- eral electronic communication between clinicians and public health agen- cies. Unfortunately, the care settings in which this information exchange must occur (hospital EDs, intensive care units, and acute care adult and pediatric wards in hospitals and clinics) often have weak links with health departments, which tend to have more established ties with infectious dis- ease departments. This represents a major opportunity for improvement in our nation’s disease surveillance system. One approach is the use of regional emergency medical Internet (REMI) systems to communicate with and collect information from emergency services providers on a near-real-time basis, on scales ranging from local to multistate alerting and surveillance (Barthell et al., 2003; Foldy et al., 2004c). Electronic Medical Records Greater use of information from EMRs and other electronic health information sources, with linkages to public health, could enhance dis- ease surveillance by detecting unusual cases of disease, clusters, or trends (Klompas et al., 2008; Lazarus et al., 2009). While adoption of EMRs is

OCR for page 119
8 BIOWATCH ANd PuBlIC HEAlTH SuRVEIllANCE proceeding slowly (Jha et al., 2009), their widespread adoption would help improve bioterrorism preparedness, but only if the standards for link- ing EMR and public health systems provide for timely reporting to public health and include the information needed to rapidly detect and respond to potential biothreats. Electronic health record systems that are linked together by regional health information systems and to local and state public health departments could accomplish a number of essential tasks, including: • increasing the capacity to prompt or automate key steps in notifi- able disease reporting for patients meeting certain criteria (e.g., an ICD-9 diagnosis or laboratory report); • increasing the capacity to prompt enhanced surveillance in response to a suspected or confirmed outbreak (e.g., automatic prompts to consider specific diagnostic testing for patients meeting clinical criteria); and • increasing the capacity for public health officials to review more detailed clinical information (e.g., radiologic and laboratory findings) when a suspect disease cluster is detected or conduct more detailed chart reviews electronically. Regional Health Information Exchanges In a growing number of communities, information from EMRs, elec- tronic laboratory reporting, hospital and other clinical registration systems, and other electronic health data are securely shared across organizational boundaries in regional health information exchanges (eHealth Initiative, 2008). In 2008, there were 42 operational HIE systems in the United States (eHealth Initiative, 2008). These systems offer many opportunities to enhance both surveillance and information sharing between clinical providers and public health authorities. In Wisconsin, for example, data from over 10 hospitals and many clinics are made available (with personal identifiers removed) for real-time syndromic surveillance by local and state health departments (Foldy et al., 2008). CDC is preparing to pilot electronic feeds from three other HIEs into the BioSense syndromic surveillance system (Lenert, 2007). In Indianapolis, the Indiana Health Information Exchange has facilitated a great increase in the completeness and timeliness of electronic laboratory reporting to public health (Overhage et al., 2008). Indeed, in 2008, 6 of the 42 operational HIEs indicated that they were providing surveillance information to public health agencies, and 5 were exchanging electronic laboratory results with public health agencies (eHealth Initiative, 2008). If HIEs are more widely adopted and become a universal medium for sending and receiving information in regional health care markets, they

OCR for page 119
 ENHANCINg SuRVEIllANCE FOR INFECTIOuS dISEASES may replace existing stand-alone public health alerting systems for commu- nicating with clinicians and offer two-way communication between public health and health care partners to improve completion of case reports and similar collaborative communications. In the future, as the interoperability of HIEs with medical practice support systems like EMRs becomes more sophisticated, HIEs may offer the opportunity for public health officials to adjust electronic decision support systems that guide clinician practice (e.g., a rising incidence of pertussis or suspicion of an terrorist release of anthrax spores leading to specific prompts in the decision support tool to raise the provider’s index of suspicion and prompt requests for diagnostic tests for a particular symptom complex) (Hanrahan et al., 2006). While such op- portunities are currently speculative, if HIEs do survive and thrive, there are few technical reasons why public health systems and health information exchange could not converge over time, allowing more real-time and less labor-intensive information sharing between health care and public health professionals. The federal government has already recognized the advantages of stan- dardizing health information exchange at the national level. The second goal of the Federal Health IT Strategic Plan: 008–0 reads, “Popula- tion Health—supports the use of electronic health information—primarily, but not exclusively, generated as a by-product of health care delivery—for critical national needs relating to public health, biomedical research, qual- ity improvement, and emergency preparedness. Such use would promote early and effective management of infectious disease outbreaks, improved tracking of chronic disease management, the ability to gather data for research purposes, and the evaluation of health care based on value, by way of comparable price and quality information” (ONC, 2008, pp. 2–3). This commitment has been made more concrete by the health information technology programs passed in the 2009 American Recovery and Renewal Act, which created economic incentives for health care providers to use electronic medical records and engage in “meaningful use” of regional health information exchange. The standardization of health information necessary to facilitate such clinical information exchange will similarly facilitate the horizontal trans- mission of critical public health information between jurisdictions as well as vertically from local to state to federal levels. As HIEs develop further, continued involvement of public health professionals will be needed to facilitate and evaluate this enhanced information sharing. Although regional health information exchange systems can reduce the need for many unique and expensive interfaces tying EMR feeds and other data to public health systems, achieving wider adoption must overcome important barriers. Some of the barriers include establishing a basis for financial sustainability, addressing concerns about preserving privacy and

OCR for page 119
 BIOWATCH ANd PuBlIC HEAlTH SuRVEIllANCE The committee tried to assess the benefits and costs of these enhance- ments, based on examples around the country. In all but one case, however, it was unable to determine the costs of adopting them nationally or to quan- tify their benefits with any rigor. Although the committee could not recom- mend enhancements based on a formal benefit-cost analysis, a consensus exists that certain steps should be taken because of the urgent need to fill gaps and strengthen the infrastructure for surveillance of infectious disease. These steps are the subject of the four recommendations that follow. Enhancing Methods for Surveillance Infectious disease surveillance is a key public health practice, and it is the responsibility of state and local government. One federal role— aggregation and analysis of surveillance data—is achieved primarily through mutual agreement and cooperation with the state and local public health agencies and through federal funding incentives. Many novel and promising surveillance techniques and programs have been developed rapidly at the local, state, and federal level in recent years, spurred in part by funding for bioterrorism and public health emergency preparedness since 2001. However, as noted in Chapter 4, there has been limited evaluation of surveillance approaches, and national standards for surveillance data and interoperability between systems are incompletely developed. Surveillance capacities are unevenly distributed among states and localities, and limited year-to-year funding has made long-term plan- ning and recruitment of qualified personnel difficult. This complex series of problems must be addressed by a dedicated, strategic, integrated, and adequately funded program. The CDC definition of surveillance is ex- plicit in noting that surveillance is an activity intended to inform specific prevention or control programs; thus, it is essential that efforts to reform surveillance be led by those responsible for the programs the surveillance systems are intended to serve. RECOMMENDATION 8: HHS should support the development, test- ing, and evaluation of improved methods for surveillance for infec- tious disease outbreaks. HHS, through CDC, should take a stronger leadership role in evaluating and enhancing efforts for automating both traditional provider and laboratory reporting and syndromic and other approaches to surveillance, including the development of standards, coordination of state and local initiatives, and integration of federal programs with state and local activities. HHS should assign this leader- ship role to those responsible for the prevention and control programs these surveillance systems are intended to serve, and it should rigor- ously evaluate these surveillance efforts.

OCR for page 119
 ENHANCINg SuRVEIllANCE FOR INFECTIOuS dISEASES HHS should coordinate a strategic, goal-oriented, integrated program of intra- and extramural research and development, pilot-testing, and op- erational evaluation of improved public health surveillance methods. This program should be implemented in partnership with DHS, the Agency for Healthcare Research and Quality, the National Institutes of Health, and other federal, state, and local agencies that have a role in monitoring threats to human health. Program planning should identify the need for additional evidence regarding effectiveness, identify gaps in the geographic deployment and quality of public health surveillance, identify and evaluate promising methods and technologies, and integrate and harmonize approaches across the many surveillance programs used by CDC and others in the public health community. The focus of this effort should be to improve • notifiable condition reporting by clinicians and laboratories, in- cluding automated, electronic reporting methods; • syndromic and other automated health information monitoring; • environmental surveillance; • public health reference laboratory services; • situational awareness based on integration of multiple surveil- lance and other information streams, including intelligence on terrorism threats; • efficiency, effectiveness, and agility of information management at the state and local levels; • horizontal and vertical information sharing across jurisdictions; • surveillance support for rapid decision making and response; and • methods to compare the utility and cost-effectiveness of surveil- lance methods. Effective methods resulting from this effort should be deployed across state and local jurisdictions through a combination of federal funding and local investments. Enhancing Mechanisms for Information Sharing The threat of bioterrorism is just one of several reasons for the United States to improve means for sharing disease surveillance information. An- other reason is to enhance detection of naturally occurring diseases, includ- ing emerging infectious diseases such as SARS and possibly avian influenza, and the re-emergence of traditional threats such as tuberculosis. At the same time, scientific and technological advances make such information sharing more effective and useful. Some advances make it quicker and easier to collect and transmit data and others make it easier to analyze them for

OCR for page 119
 BIOWATCH ANd PuBlIC HEAlTH SuRVEIllANCE patterns and anomalies. Others, such as genetic sequencing and polymerase chain reaction (PCR) allow new tests to be developed rapidly. The shar- ing of phenotypic and genotypic fingerprinting results enables molecular epidemiology—comparing and linking strains to connect widely separated cases—in ways not possible before. In addition to quicker and more effective outbreak detection, informa- tion sharing can be expected to improve situational awareness and response capabilities. It should enable a jurisdiction to better track an outbreak, focus its response activities, and determine the effectiveness of response efforts. Better information sharing should also enable affected jurisdictions to see the bigger picture and coordinate their actions for their mutual benefit. RECOMMENDATION 9: DHS and HHS should enhance the efforts to develop a mechanism for providing a national situational aware- ness of biological threats and significant disease outbreaks, to better inform rapid decision making and response through cross-jurisdictional data sharing and analysis of data. To this end, DHS and HHS should facilitate the development of an interoperable, secure, bidirectional, nationwide information-sharing infrastructure and ensure that local and state health officials have ready access to the system. “National” in this context does not mean federal or centralized, al- though an important feature of such an information-sharing infrastruc- ture is the ability to analyze data aggregated across multiple jurisdictions. This can sometimes make it possible, for example, to recognize a disease outbreak when the number of cases in any one jurisdiction is too small to generate concern. Or, if the exposure is in a transportation hub such as an airport or train station, it may make it possible to recognize that geographi- cally scattered cases are the result of exposure in a single incident. A nationwide information-sharing infrastructure that is decentralized and a cooperative effort by multiple jurisdictions will also require a bi- directional information flow. Higher levels of data aggregation and analysis may be necessary to detect an outbreak in its earliest stages, but an effective response depends on well-informed actions by and cooperation among the state and local public health agencies where people are sick. A decentralized cooperative infrastructure should also enhance data sharing because the data providers would find it to be useful in carrying out their missions. Accordingly, CDC and the states should focus their efforts on develop- ing and deploying methods for intra- and interstate, cross-jurisdictional integration, sharing, analysis, and display of public health surveillance information. This system should function to monitor the presence of natu- rally occurring or deliberately introduced infectious agents, discover emerg- ing or yet undefined threats to public health, and integrate data from the

OCR for page 119
 ENHANCINg SuRVEIllANCE FOR INFECTIOuS dISEASES BioWatch program and the public health and health care sectors. Priority should be given to results of tests for laboratory-reportable diseases, LRN biothreats, and BioWatch samples. Improving Technologies for Clinical Case Recognition and Reporting If environmental surveillance systems such as BioWatch do not detect a bioaerosol attack (or if a biological attack takes another form), early detec- tion may depend upon an astute clinician’s recognition of history, symp- toms, or signs that are consistent with exposure to a bioterrorism agent. However, most clinicians will be seeing what amounts to a rare disease for the first time and may not recognize it, especially in the early stages when symptoms are still consistent with other, much more common (and less dan- gerous) diseases. The availability, and use, of valid and reliable automated assistance may aid in recognizing rarely encountered diseases that pose a large threat to public health. RECOMMENDATION 10: HHS should promote the development, testing, and evaluation of technologies that strengthen the accuracy, timeliness, consistency, and completeness of clinical diagnosis of infec- tious diseases of public health importance, and that facilitate timely reporting of these diagnoses to public health authorities. Promising strategies, described earlier in this chapter, include • computer-assisted emergency department triage; • bedside decision support tools with automated case reporting; • rapid point-of-care laboratory testing; and • multiplex assays that could be used for epidemiologic investigations, surveillance, or clinical applications, especially in the context of suspected outbreaks or concerning signals from syndromic systems or BioWatch. HHS, under the auspices of the Office of Assistant Secretary for Pre- paredness and Response, should identify and support the deployment of web-based clinical decision support tools to help triage nurses and acute care clinicians identify, report, and manage suspicious cases of diseases of public health concern. These systems should be clinically useful for more routine diseases and, therefore, be employed on an ongoing basis. They should be bidirectional so they can quickly and reliably communicate public health alerts to front-line providers as well as enable busy clinicians to easily report suspect or confirmed cases to the local health department. The systems should be easily modifiable so they can be updated to reflect evolving knowledge of a bioterrorist attack or infectious disease outbreak

OCR for page 119
8 BIOWATCH ANd PuBlIC HEAlTH SuRVEIllANCE and provide event-specific recommendations to providers on recognizing and managing outbreak-associated cases. Enhancing Public Health Surveillance Capacity Before the terrorism events of 2001, the governmental public health infrastructure was unevenly, but generally inadequately, staffed and funded to accomplish its traditional tasks, including surveillance (IOM, 2003). During the 1990s, some states and localities began to use information technologies to develop new techniques to counter biological threats, such as syndromic surveillance, monitoring of health-related behaviors such as over-the-counter pharmacy sales and absenteeism, and electronic laboratory information management and reporting systems. CDC began to encourage and subsidize electronic reporting of surveillance data. Congress began to fund state and local public health preparedness in 1999 through CDC’s Public Health Emergency Preparedness Program (PHEP). The events of 2001, however, made the general weakness in the capacity of the public health system painfully evident to policy makers (IOM, 2003). At that time, there were plans under the Public Health Improvements Act of 2000 to provide grants to improve basic state and local public health infrastructure and under the Public Health Threats and Emergency Act of 2000 to provide grants for state and local bioterrorism preparedness. After 2001, the two efforts were combined and focused on preparedness for bioterrorism and other health emergencies (IOM, 2003). The Health Resources and Services Administration in HHS began a Hospital Prepared- ness Program (HPP) in 2002. Federal funding for public health and hospital preparedness rose from less than $50 million in fiscal year (FY) 2001 to more than $1 billion in FY 2002. The substantial infusion of federal funds for public health and medi- cal preparedness has improved the general level of preparedness, but the categorical nature of the funding and the uncertainty of its continuation has generally discouraged public health agencies from integrating these new capacities with traditional programs. At the same time, the basic public health infrastructure, such as staffing and electronic information manage- ment and analysis systems, did not experience the same level of investment in most places. This uneven level of basic organizational capacity reduces the national level of preparedness to detect and, especially, to respond to and manage the consequences of a major health emergency. The need for a minimum standard of local public health services to detect public health emergencies, as demonstrated by the rapid global spread of illnesses like SARS and the novel influenza A (H1N1), is also now codified in the World Health Organization’s International Health Regulations (WHO, 2008). Thus there is an enforceable treaty obligation to improve the capability of local health services across the United States.

OCR for page 119
 ENHANCINg SuRVEIllANCE FOR INFECTIOuS dISEASES Meanwhile, the current economic recession is causing significant cut- backs in state and local government programs, including basic public health programs. PHEP and HPP funding has also declined for several years, even though much of the federal investment in capacity building requires continued financial support to be effective. Even with continuing federal investments, achieving the desired minimum state and local capacities for surveillance for bioterrorism and infectious disease threats will be chal- lenging. The task is substantial and will require effective coordination and collaboration across the diversity of configurations of state and local public health systems and across complexities of state and federal relationships and interagency action at the federal level. RECOMMENDATION 11: HHS and DHS should give high priority to building and sustaining sufficient public health workforce strength and competencies, along with associated laboratory and information management capacities, needed by all states and communities to detect a bioterrorism attack or other public health emergency. They should pursue a nationally consistent minimum level of disease surveillance and communication sufficient to provide early warning and tracking of bioagent attacks and outbreaks of natural disease. Key state and local capacities should include the following: • Adequate amounts and types of staff expertise, including infec- tious diseases, veterinary health, laboratory science, environmental health, applied epidemiology and biostatistics, and health informatics; • Adequate public health reference laboratory capacity; • Electronic laboratory reporting systems to ensure timely and complete transmission of notifiable disease reports from commercial and hospital-based laboratories to public health; • Universal access to public health reference laboratory services for detecting and confirming biothreats and other emerging infectious diseases and performing molecular typing to link cases in outbreaks; • Robust surveillance and outbreak management information systems; • Electronic death registration systems; • Health alert networks that connect public health departments with all health care facilities and providers in their jurisdictions; and • Integration of public health needs and systems into emerging health information exchanges. For maximum benefit this investment should be directed at developing and maintaining staff expertise, informed decision making, and response capabilities that would serve in both natural and bioterrorism-related dis- ease outbreaks.

OCR for page 119
0 BIOWATCH ANd PuBlIC HEAlTH SuRVEIllANCE REFERENCES APHL (Association of Public Health Laboratories). 2007. Framework for electronic labora- tory reporting: Recommendations to policymakers. A report of the Electronic Labora- tory Reporting Consensus-Building Meeting held October 30, 2007, in Arlington, VA. http://www.aphl.org/policy/Documents/Electronic_Lab_Reporting_2007.pdf (accessed March 26, 2009). Augustine, J.J., A.L. Kellermann, and J.P. Koplan. 2004. America’s emergency care system and severe acute respiratory syndrome: Are we ready? Annals of Emergency medicine 43(1):23–26. Babin, S., S. Magruder, S. Hakre, J. Coverly, and J.S. Lombardo. 2007. Understanding the data: Health indicators in disease surveillance. In: disease surveillance: A public health informatics approach, edited by J.S. Lombardo and D.L. Buckeridge. Hoboken, NJ: Wiley-Interscience. Pp. 43–90. Baker, E.L., Jr., and J.P. Koplan. 2002. Strengthening the nation’s public health infrastruc- ture: Historic challenge, unprecedented opportunity. Health Affairs 21(6):15–27. http:// content.healthaffairs.org/cgi/reprint/21/6/15 (accessed March 25, 2009). Baker, E.L., M.A. Potter, D.L. Jones, S.L. Mercer, J.P. Cioffi, L.W. Green, P.K. Halverson, M.Y. Lichtveld, and D.W. Fleming. 2005. The public health infrastructure and our nation’s health. Annual Review of Public Health 26:303–318. Barry, M.A., L. Centra, E. Pratt, Jr., C.K. Brown, and L. Giordano. 1998. Where do the dollars go? measuring local public health expenditures. Washington, DC: Public Health Founda- tion. http://www.phf.org/reports/Expend1/loclexpn.pdf (accessed February 23, 2009). Barry, M.A., R. Bialek, M.R. Fraser, C.K. Brown, and S. Vogel. 2000. Statewide public health expenditures: A pilot study in maryland. Washington, DC: Public Health Foundation. http://www.phf.org/reports/Expend1/MDmain.pdf (accessed February 23, 2009). Barthell, E.N., S.L. Foldy, K.R. Pemble, C.W. Felton, P.J. Greischar, R.G. Pirrallo, and W.J. Bazan. 2003. Assuring community emergency care capacity with collaborative Internet tools: The Milwaukee experience. Journal of Public Health management and Practice 9(1):35–42. Bullard, M. 2008. Emergency department potential for biosurveillance and BioWatch. Presen- tation to the Committee on Effectiveness of National Biosurveillance Systems: BioWatch and the Public Health System, Meeting 3, November 3–5, Washington, DC. Cass, D. 2005. Once upon a time in the emergency department: A cautionary tale. Annals of Emergency medicine 46(6):541–543. CDC (Centers for Disease Control and Prevention). 2001. Public health’s infrastructure: A status report. Atlanta, GA: CDC. http://www.uic.edu/sph/prepare/courses/ph410/ resources/phinfrastructure.pdf (accessed February 12, 2009). CDC. 2006. Surveillance for foodborne-disease outbreaks—United States, 1998–2002. mor- bidity and mortality Weekly Report 55(SS-10):1–34. http://www.cdc.gov/mmwr/PDF/ss/ ss5510.pdf (accessed August 7, 2009). CDC. 2008a. National biosurveillance strategy for human health, 008–03. Working Paper Version 1.0. December 15. http://sites.google.com/site/nbshh10/graphics-and-documents/ NationalBiosurveillanceStrategyv10_121508-1650.pdf?attredirects=0 (accessed March 3, 2009). CDC. 2008b. Potential effects of electronic laboratory reporting on improving timeliness of infectious disease notification—Florida, 2002–2006. morbidity and mortality Weekly Report 57(49):1325–1328. http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5749a2. htm?s_cid=mm5749a2_e (accessed December 22, 2008). CDC. 2009a. IOm review. Document submitted to the Committee on Effectiveness of National Biosurveillance Systems: BioWatch and the Public Health System, January 13.

OCR for page 119
 ENHANCINg SuRVEIllANCE FOR INFECTIOuS dISEASES CDC. 2009b. Multistate outbreak of Salmonella infections, associated with peanut butter and peanut butter-containing products—United States, 2008–2009. morbidity and mortality Weekly Report 58(4):85–90. http://www.cdc.gov/mmwr/PDF/wk/mm5804.pdf (accessed August 7, 2009). CDC. 2009c. Swine influenza A (H1N1) infection in two children—Southern California, March–April 2009. morbidity and mortality Weekly Report 58(5):400–402. http://www. cdc.gov/mmwr/PDF/wk/mm5815.pdf (accessed August 7, 2009). CSTE (Council of State and Territorial Epidemiologists). 2007. CSTE official list of Nation- ally Notifiable Conditions. CSTE Position Statement 07-EC-02. http://www.cste.org/ PS/2007ps/2007psfinal/EC/07-EC-02.pdf (accessed February 27, 2009). CSTE. 2008. Criteria for inclusion of conditions on CSTE Nationally Notifiable Condition list and for categorization as immediately or routinely notifiable. CSTE Position Statement 08-EC-02. http://www.cste.org/PS/2008/2008psfinal/08-EC-02.pdf (accessed February 27, 2009). Dong S.L., M.J. Bullard, D.P. Meurer, S. Blitz, E. Akhmetshin, A. Ohinmaa, B.R. Holroyd, and B.H. Rowe. 2007. Predictive validity of a computerized emergency triage tool. Academic Emergency medicine 14(1):16–21. Effler, P., M. Ching-Lee, A. Bogard, M.C. Ieong, T. Nekomoto, and D. Jernigan. 1999. State- wide system of electronic notifiable disease reporting from clinical laboratories: Compar- ing automated reporting with conventional methods. Journal of the American medical Association 282(19):1845–1850. http://jama.ama-assn.org/cgi/reprint/282/19/1845 (ac- cessed March 3, 2009). eHealth Initiative. 2008. Fifth annual survey of health information exchange at the state and local levels: Overview of 008 findings. Washington, DC: eHealth initiative. http://www. ehealthinitiative.org/HIESurvey (accessed March 3, 2009). Eilbert, K.W., M. Barry, R. Bialek, and M. Garufi. 1996. measuring expenditures for essential public health services. Washington, DC: Public Health Foundation. http://www.phf. org/reports/Expend1/Measuring_Expenditures_for_Essential_Public_Health_Services.pdf (accessed February 23, 2009). Endsley, M.R., B. Bolté, and D.G. Jones. 2003. designing for situation analysis: An approach to user-centered design. Boca Raton, FL: Taylor & Francis Group. Fallon, K.K., and D. Boone. 2004. Death certificate surveillance—New Hampshire. morbid- ity and mortality Weekly Report 53(Suppl.):236. http://www.cdc.gov/mmwr/preview/ mmwrhtml/su5301a48.htm (accessed February 28, 2009). FDA (Food and Drug Administration). 2008. FdA clears first test designed to detect and identify  respiratory viruses from single sample. http://www.fda.gov/NewsEvents/ Newsroom/PressAnnouncements/2008/ucm116829.htm (accessed July 8, 2009). Fine, A., and M. Layton. 2001. Lessons from the West Nile viral encephalitis outbreak in New York City, 1999: Implications for bioterrorism preparedness. Clinical Infectious diseases 32(2):277–282. Foldy, S. 2004. Linking better surveillance to better outcomes. morbidity and mortality Weekly Report 53(Suppl.):12–17. http://www.cdc.gov/mmwr/preview/mmwrhtml/su5301a4.htm (accessed March 30, 2009). Foldy, S., P. Biedrzycki, E. Barthell, N. Haney-Healy, B.K. Baker, D.S. Howe, D. Gieryn, and K.R. Pemble. 2004a. Syndromic surveillance using regional emergency medicine Internet. Annals of Emergency medicine 44(3):242–246. Foldy, S.L., P.A. Biedrzycki, B.K. Baker, G.R. Swain, D.S. Howe, D. Gieryn, E.N. Barthell, and K.R. Pemble. 2004b. The public health dashboard: A surveillance model for bioterrorism preparedness. Journal of Public Health management and Practice 10(3):234–240.

OCR for page 119
 BIOWATCH ANd PuBlIC HEAlTH SuRVEIllANCE Foldy, S., E.N. Barthell, J.C. Silva, P. Biedrzycki, D.S. Howe, M. Erme, B. Keaton, C.L. Hamilton, L.K. Brewer, G. Miller, R. Bernstein, E. Eby, K. Pemble, and C. Fenton. 2004c. SARS surveillance project: Internet-enabled multi-region syndromic surveillance for rapidly emerging disease. morbidity and mortality Weekly Report 53(Suppl.):215–220. Foldy, S., K. Pemble, R.T. Heffernan, E.N. Barthell, and J. Beix. 2008. Whoosh!: Building and controlling Wisconsin HIE’s clinical data stream for local and state health departments. Public Health Information Network annual meeting, Aug. 28. Atlanta, GA: Centers for Disease Control and Prevention. http://cdc.confex.com/recording/cdc/phin2008/pdf/free/ 4db77adf5df9fff0d3caf5cafe28f496/paper17528_1.pdf (accessed July 30, 2009). GAO (Government Accountability Office). 2007. Homeland security: Federal efforts are help- ing to alleviate some challenges encountered by state and local information fusion centers. GAO-08-35. http://www.gao.gov/new.items/d0835.pdf (accessed March 30, 2009). Hanrahan, L.P., S. Foldy, E.N. Barthell, and S. Wood. 2006. Medical informatics in popula- tion health: Building Wisconsin’s strategic framework for health information technology. Wisconsin medical Journal 105(1):16–22. Honoré, P.A., and T. Schlechte. 2007. State public health agency expenditures: Categorizing and comparing to performance levels. Journal of Public Health management and Prac- tice 13(2):156–162. http://journals.lww.com/jphmp/Fulltext/2007/03000/State_Public_ Health_Agency_Expenditures_.11.aspx (accessed August 7, 2009). Honoré, P.A., R.L. Clarke, D.M. Mead, and S.M. Menditto. 2007. Creating financial transparency in public health: Examining best practices of system partners. Journal of Public Health management and Practice 13(2):121–129. http://journals.lww.com/ jphmp/Fulltext/2007/03000/Creating_Financial_Transparency_in_Public_Health_.7.aspx (accessed August 7, 2009). IEc (Industrial Economics, Incorporated). 2009. Summary of research into the costs of en- hanced public health surveillance systems. Commissioned paper. Committee on Effec- tiveness of National Biosurveillance Systems: BioWatch and the Public Health System, Washington, DC. IOM (Institute of Medicine). 2000. To err is human: Building a safer health system. Washing- ton, DC: National Academy Press. IOM. 2001. Crossing the quality chasm: A new health system for the st century. Washing- ton, DC: National Academy Press. IOM. 2003. The future of the public’s health in the st century. Washington, DC: The Na- tional Academies Press. IOM. 2007. Hospital-based emergency care at the breaking point. Washington, DC: The National Academies Press. Jajosky, R.A., and S.L. Groseclose. 2004. Evaluation of reporting timeliness of public health surveillance systems for infectious diseases. BmC Public Health 4:29. Jha, A.K., C.M. DesRoches, E.G. Campbell, K. Donelan, S.R. Rao, T.G. Ferris, A. Shields, S. Rosenbaum, and D. Blumenthal. 2009. Use of electronic health records in U.S. hospitals. New England Journal of medicine 360(16):1628–1638. Klompas, M., R. Lazarus, R. Platt, X. Hou, F. Campion, B. Kruskal, G. Haney, J. Daniel, A. DeMaria, and S.J.N. McNabb. 2008. Automated detection and reporting of notifiable diseases using electronic medical records versus passive surveillance—Massachusetts, June 2006–July 2007. morbidity and mortality Weekly Report 57(14):373–376. Lazarus, R., M. Klompas, F.X. Campion, S. McNabb, X. Hou, J. Daniel, G. Haney, A. DeMaria, L. Lenart, and R. Platt. 2009. Electronic support for public health: Validated case finding and reporting for notifiable diseases using electronic medical data. Journal of the American medical Informatics Association 16(1):18–24. http://www.jamia.org/cgi/ reprint/16/1/18 (accessed February 23, 2009).

OCR for page 119
3 ENHANCINg SuRVEIllANCE FOR INFECTIOuS dISEASES Lenert, L. 2007. The evolution of public health surveillance to a gRId model. Presentation to the 2007 International Society for Disease Surveillance Sixth Annual Conference. http://www.syndromic.org/conference/2007/powerpoint/5%20CDC.Linert.ppt (accessed July 27, 2009). Lurie, N., J. Wasserman, and C.D. Nelson. 2006. Public health preparedness: Evolution or revolution? Health Affairs 25(4):935–945. http://content.healthaffairs.org/cgi/ reprint/25/4/935 (accessed March 25, 2009). Magnuson, J.A. 2008 (unpublished). 2007 National electronic laboratory reporting snapshot survey: Summary of results. Portland, OR: Oregon State Public Health, Acute and Com- municable Disease Prevention. Mahony, J.B. 2008. Detection of respiratory viruses by molecular methods. Clinical microbiol- ogy Reviews 21(4):716–747. NPHPSP (National Public Health Performance Standards Program). No date. Local Public Health System Performance Assessment – Model Standards. Version 2. http://www. cdc.gov/od/ocphp/nphpsp/documents/FINAL%20Local%20MS.pdf (accessed July 27, 2009). ONC (Office of the National Coordinator for Health Information Technology). 2008. Federal health IT strategic plan: 008–0.Washington, DC: Department of Health and Human Services. http://healthit.hhs.gov/portal/server.pt/gateway/PTARGS_0_10731_848083_0_ 0_18/HITStrategicPlan508.pdf (accessed July 27, 2009). Overhage, J.M., S. Grannis, and C.J. McDonald. 2008. A comparison of the completeness and timeliness of automated electronic laboratory reporting and spontaneous reporting of notifiable conditions. American Journal of Public Health 98 (2):344–350. Panackal, A.A., N.M. M’ikanatha, F.-C. Tsui, J. McMahon, M.M. Wagner, B.W. Dixon, J. Zubieta, M. Phelan, S. Mirza, J. Morgan, D. Jernigan, A.W. Pasculle, J.T. Rankin, Jr., R.A. Hajjeh, and L.H. Harrison. 2002. Automatic electronic laboratory-based reporting of notifiable infectious diseases at a large health system. Emerging Infectious diseases 8(7):685–691. http://www.cdc.gov/ncidod/EID/vol8no7/pdf/V8n7_final.pdf (accessed March 3, 2009). Papier, A. 2008. Bioterrorism: The challenge of early diagnosis. Presentation to the Committee on Effectiveness of National Biosurveillance Systems: BioWatch and the Public Health System, Meeting 3, November 3–5, Washington, DC. Peterson, A., and D. Terashita. 2008. The unusual death surveillance system: Real time monitoring of deaths using coroner’s data, 2003–2006. In: 00 Special Studies Report, Acute Communicable Disease Control Program, Los Angeles County Department of Public Health. Pp. 67–72. http://www.lapublichealth.org/acd/reports/ annual/2007%20Special%20Studies%20Report%20for%20Web%20Posting.pdf (ac- cessed August 7, 2009). Proctor, M.E., K.A. Blair, and J.P. Davis. 1998. Surveillance data for waterborne illness de- tection: An assessment following a massive waterborne outbreak of Cryptosporidium infection. Epidemiology and Infection 120(1):43–54. Public Health Functions Steering Committee. 1995. Public health in America: The essential public health services. Washington, DC: Public Health Functions Steering Commit- tee, U.S. Public Health Service. http://www.health.gov/phfunctions/public.htm (accessed February 27, 2009). Reed, K.D., J.W. Melski, M.B. Graham, R.L. Regnery, M.K. Sotir, M.V. Wegner, J.J. Kazmierczak, E.J. Stratman, Y. Li, J.A. Fairley, G.R. Swain, V. Olson, E.K. Sargent, S.C. Kehl, M.A. Frace, R. Kline, S.L. Foldy, J.P. Davis, and I.K. Damon. 2004. The initial detection of human monkeypox in the western hemisphere: Association with infected prairie dogs. New England Journal of medicine 350(4):342–350.

OCR for page 119
 BIOWATCH ANd PuBlIC HEAlTH SuRVEIllANCE Riegle, R. 2009. The future of fusion centers: Potential promise and dangers. Testimony be- fore the Committee on Homeland Security, Subcommittee on Intelligence, Information Sharing, and Terrorism Risk Assessment, April 1. http://www.dhs.gov/ynews/testimony/ testimony_1238597287040.shtm (accessed July 30, 2009). Rolka, H., J.C. O’Connor, and D. Walker. 2008. Public health information fusion for situation awareness. In: lecture Notes in Computer Science: Biosurveillance and Biosecurity, ed- ited by D. Zeng, H. Chen, H. Rolka, and W.B. Lober. Raleigh, NC: Springer. Pp. 1–9. Sensenig, A.L. 2007. Refining estimates of public health spending as measured in national health expenditures accounts: The United States experience. Journal of Public Health manage- ment and Practice 13(2):103–114. http://journals.lww.com/jphmp/Fulltext/2007/03000/ Refining_Estimates_of_Public_Health_Spending_as.5.aspx (accessed August 7, 2009). Sosin, D. 2009. Enhancing nationwide biosurveillance for human health. Presentation at the Integrated Surveillance Seminar, CDC, February 11. http://www2a.cdc.gov/ncphi/disss/ seminars/docs/2-11-09DanSosin.ppt (accessed March 3, 2009). TFAH (Trust for America’s Health). 2008. Ready or not? Protecting the public’s health from diseases, disasters, and bioterrorism. Washington, DC: TFAH. http://healthyamericans. org/assets/files/bioterror-report-2008.pdf (accessed July 17, 2009). The White House. 2007. Public health and medical preparedness. Homeland Security Presidential Directive (HSPD) 21. Washington, DC. http://www.dhs.gov/xabout/laws/ gc_1219263961449.shtm#1 (accessed March 3, 2009). WHO (World Health Organization). 2008. International health regulations (00), 2nd ed. Geneva, Switzerland: WHO. Yasnoff, W.A., P.W. O’Carroll, D. Koo, R.W. Linkins, and E.M. Kilbourne. 2000. Public health informatics: Improving and transforming public health in the information age. Journal of Public Health management and Practice 6(6):67–75.