FIGURE 2.13 Estimates of the potential liquid fuel supply from conversion of coal and biomass to liquid fuels in 2020 and 2035 (relative to 2007) compared to total liquid fuel consumption. The current (2007) U.S. liquid fuel consumption, in barrels of oil, for transportation is shown on the left (in green). To estimate supply, an accelerated deployment of technologies as described in Part 2 of this report is assumed. A mix of 60 percent coal and 40 percent biomass (on an energy basis) is assumed as well. The volume of liquid fuels estimated to be available in 2020 and 2035 depends primarily on the rate of plant deployment and also assumes availability of 500 million dry tonnes per year of cellulosic biomass for fuel production after 2020. The supply of cellulosic ethanol estimated in Figure 2.11 cannot be achieved simultaneously with this coal-and-biomass-to-liquid fuel (CBTL) supply, as the same biomass is used in each case. There is uncertainty associated with the technical potential for carbon capture and storage (CCS). CCS technologies will need to be successfully demonstrated over the next decade if they are to be used for liquid fuel production in 2035. Potential liquid fuel supplies are estimated individually for each technology, and estimates do not account for future fuel demand, competition for biomass, or competition among supply sources. Potential supplies are expressed in barrels of gasoline equivalent. One barrel of oil produces about 0.85 barrels of gasoline equivalent of gasoline and diesel. All values have been rounded to two significant figures.

FIGURE 2.13 Estimates of the potential liquid fuel supply from conversion of coal and biomass to liquid fuels in 2020 and 2035 (relative to 2007) compared to total liquid fuel consumption. The current (2007) U.S. liquid fuel consumption, in barrels of oil, for transportation is shown on the left (in green). To estimate supply, an accelerated deployment of technologies as described in Part 2 of this report is assumed. A mix of 60 percent coal and 40 percent biomass (on an energy basis) is assumed as well. The volume of liquid fuels estimated to be available in 2020 and 2035 depends primarily on the rate of plant deployment and also assumes availability of 500 million dry tonnes per year of cellulosic biomass for fuel production after 2020. The supply of cellulosic ethanol estimated in Figure 2.11 cannot be achieved simultaneously with this coal-and-biomass-to-liquid fuel (CBTL) supply, as the same biomass is used in each case. There is uncertainty associated with the technical potential for carbon capture and storage (CCS). CCS technologies will need to be successfully demonstrated over the next decade if they are to be used for liquid fuel production in 2035. Potential liquid fuel supplies are estimated individually for each technology, and estimates do not account for future fuel demand, competition for biomass, or competition among supply sources. Potential supplies are expressed in barrels of gasoline equivalent. One barrel of oil produces about 0.85 barrels of gasoline equivalent of gasoline and diesel. All values have been rounded to two significant figures.

Sources: Data from Energy Information Administration (2008) and Chapter 5 in Part 2 of this report.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement