Cover Image


View/Hide Left Panel

that on the manufacturing side, one issue to overcome is taxes. “Right now the playing field is not level,” he agreed. “But it’s possible that even if there are tax incentives to bring manufacturing to the U.S., you will find another country in Asia that’s willing to forego taxes for 15 years in order to bring industry. One of the ways around that is some incentives up front that may not recover everything you would lose in profitability. We have to make these kinds of choices that determine whether we have a stagnant market, a growing market, or a rapidly growing market. The best solution to all of this is to somehow get to that rapidly growing end market.”

Mr. O’Rourke added a comment about the situation in Europe. Many companies had offers that included tax exemptions for long periods. Other factors, however, such as the cost of shipping glass long distances, or the benefits of a local presence, can play a significant role in cost and siting analyses. “Once fuel costs go back up,” he said, “shipping is going to be more important. So when considering how to bring manufacturing to a region, I cannot think of anything more important than having a strong local market for your product.

A questioner asked what a demonstration project would cost and what metrics could be used to evaluate it. Dr. Johnston referred to the $5 million Air Force base demonstration project that produces over 3.4 MW of power for under $4 per kWh of installed cost. “I would like to see Congressman Kaptur use her influence to help not just northwestern Ohio but the United States,” he said, “and help get some of this incentive money in every state to do the same kinds of projects. We still have bridges and hotels built in the 1930s; it would be nice to look at solar fields in 30 years that still produce power.”

Mr. Zweibel reiterated his belief “that the next dollar spent on PV should be spent to leverage technology leadership.” He said that R&D money and technology development produce leadership, which is “right now the only thing the United States has. For everything else we have to beat someone else at tax issues or other incentives. We should not forget that we have no PV R&D program in the United States with the kind of leverage we need to move these technologies forward.” He said he was referring to established technologies: crystalline silicon, amorphous silicon, thin-film microcrystalline silicon, cadmium telluride, and copper indium diselenide. “I’m not talking about plastic solar cells,” he said, “or 5th-generation solar cells that are in proposals from single professors at various universities playing with beakers. I am talking about technologies that are out there in gigawatts, which have an opportunity to be half or less of today’s already nearly cost-competitive cost. Avoid diversions in mainstream applied research programs. Right now, we are funding more R&D diversions than actions that will actually accelerate success.”

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement