B
Statement of Task

The Space Studies Board, in cooperation with the Aeronautics and Space Engineering Board, will conduct a two-part study to address issues in the detection of potentially hazardous Near-Earth Objects (NEOs) and approaches to mitigating identified hazards. Both tasks will include an assessment of the costs of various alternatives, using independent cost estimating. Options that blend the use of different facilities (ground- or space-based), or involve international cooperation, may be considered. Each study phase will result in a report to be delivered on the schedule provided below. Key questions to be addressed during each phase of the study are the following:


Task 1: NEO Surveys


What is the optimal approach to completing the NEO census called for in the George E. Brown, Jr. Near-Earth Object Survey section of the 2005 NASA Authorization Act to detect, track, catalogue and characterize the physical characteristics of at least 90 percent of potentially hazardous NEOs larger than 140 meters in diameter by the end of year 2020? Specific issues to be considered include, but are not limited to, the following:

  • What observational, data-reduction, and data-analysis resources are necessary to achieve the Congressional mandate of detecting, tracking, and cataloguing the NEO population of interest?

  • What physical characteristics of individual objects above and beyond the determination of accurate orbits should be obtained during the survey to support mitigation efforts?

  • What role could be played by the National Science Foundation’s Arecibo Observatory in characterizing these objects?

  • What are possible roles of other ground- and space-based facilities in addressing survey goals, e.g., potential contributions of the Large Synoptic Survey Telescope (LSST) and the Panoramic Survey Telescope and Rapid Response System (Pan STARRS)?

Task 2: NEO Hazard Mitigation


What is the optimal approach to developing a deflection capability, including options with a significant international component? Issues to be considered include, but are not limited to, the following:

  • What mitigation strategy should be followed if a potentially hazardous NEO is identified?

  • What are the relative merits and costs of various deflection scenarios that have been proposed?



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 22
B Statement of Task The Space Studies Board, in cooperation with the Aeronautics and Space Engineering Board, will conduct a two-part study to address issues in the detection of potentially hazardous Near-Earth Objects (NEOs) and approaches to mitigating identified hazards. Both tasks will include an assessment of the costs of various alternatives, using independent cost estimating. Options that blend the use of different facilities (ground- or space-based), or involve international cooperation, may be considered. Each study phase will result in a report to be delivered on the schedule provided below. Key questions to be addressed during each phase of the study are the following: Task 1: NEO Surveys What is the optimal approach to completing the NEO census called for in the George E. Brown, Jr. Near-Earth Object Survey section of the 2005 NASA Authorization Act to detect, track, catalogue and characterize the physical characteristics of at least 90 percent of potentially hazardous NEOs larger than 140 meters in diameter by the end of year 2020? Specific issues to be considered include, but are not limited to, the following: • What observational, data-reduction, and data-analysis resources are necessary to achieve the Congressional mandate of detecting, tracking, and cataloguing the NEO population of interest? • What physical characteristics of individual objects above and beyond the determination of accurate orbits should be obtained during the survey to support mitigation efforts? • What role could be played by the National Science Foundation’s Arecibo Observatory in characterizing these objects? • What are possible roles of other ground- and space-based facilities in addressing survey goals, e.g., potential contributions of the Large Synoptic Survey Telescope (LSST) and the Panoramic Survey Telescope and Rapid Response System (Pan STARRS)? Task 2: NEO Hazard Mitigation What is the optimal approach to developing a deflection capability, including options with a significant international component? Issues to be considered include, but are not limited to, the following: • What mitigation strategy should be followed if a potentially hazardous NEO is identified? • What are the relative merits and costs of various deflection scenarios that have been proposed? 22