National Academies Press: OpenBook
« Previous: 2 The National Context
Suggested Citation:"3 Science Education in Action." National Academy of Sciences and National Academy of Engineering. 2009. Nurturing and Sustaining Effective Programs in Science Education for Grades K-8: Building a Village in California: Summary of a Convocation. Washington, DC: The National Academies Press. doi: 10.17226/12739.
×
Page 25
Suggested Citation:"3 Science Education in Action." National Academy of Sciences and National Academy of Engineering. 2009. Nurturing and Sustaining Effective Programs in Science Education for Grades K-8: Building a Village in California: Summary of a Convocation. Washington, DC: The National Academies Press. doi: 10.17226/12739.
×
Page 26
Suggested Citation:"3 Science Education in Action." National Academy of Sciences and National Academy of Engineering. 2009. Nurturing and Sustaining Effective Programs in Science Education for Grades K-8: Building a Village in California: Summary of a Convocation. Washington, DC: The National Academies Press. doi: 10.17226/12739.
×
Page 27
Suggested Citation:"3 Science Education in Action." National Academy of Sciences and National Academy of Engineering. 2009. Nurturing and Sustaining Effective Programs in Science Education for Grades K-8: Building a Village in California: Summary of a Convocation. Washington, DC: The National Academies Press. doi: 10.17226/12739.
×
Page 28
Suggested Citation:"3 Science Education in Action." National Academy of Sciences and National Academy of Engineering. 2009. Nurturing and Sustaining Effective Programs in Science Education for Grades K-8: Building a Village in California: Summary of a Convocation. Washington, DC: The National Academies Press. doi: 10.17226/12739.
×
Page 29
Suggested Citation:"3 Science Education in Action." National Academy of Sciences and National Academy of Engineering. 2009. Nurturing and Sustaining Effective Programs in Science Education for Grades K-8: Building a Village in California: Summary of a Convocation. Washington, DC: The National Academies Press. doi: 10.17226/12739.
×
Page 30
Suggested Citation:"3 Science Education in Action." National Academy of Sciences and National Academy of Engineering. 2009. Nurturing and Sustaining Effective Programs in Science Education for Grades K-8: Building a Village in California: Summary of a Convocation. Washington, DC: The National Academies Press. doi: 10.17226/12739.
×
Page 31
Suggested Citation:"3 Science Education in Action." National Academy of Sciences and National Academy of Engineering. 2009. Nurturing and Sustaining Effective Programs in Science Education for Grades K-8: Building a Village in California: Summary of a Convocation. Washington, DC: The National Academies Press. doi: 10.17226/12739.
×
Page 32
Suggested Citation:"3 Science Education in Action." National Academy of Sciences and National Academy of Engineering. 2009. Nurturing and Sustaining Effective Programs in Science Education for Grades K-8: Building a Village in California: Summary of a Convocation. Washington, DC: The National Academies Press. doi: 10.17226/12739.
×
Page 33
Suggested Citation:"3 Science Education in Action." National Academy of Sciences and National Academy of Engineering. 2009. Nurturing and Sustaining Effective Programs in Science Education for Grades K-8: Building a Village in California: Summary of a Convocation. Washington, DC: The National Academies Press. doi: 10.17226/12739.
×
Page 34

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

3 Science Education in Action Key Point •  demonstration of effective science teaching with a diverse group of fifth A graders and a poster session and demonstration of scientific concepts by sixth graders showed how engaging and informative science education can be. B ecause it was unclear whether all participants had actually per- sonally experienced or observed active, student-engaged science teaching and learning in the early grades, the organizing group decided to model this kind of teaching and learning early during the convocation. Thus, on the first morning, attendees were able to participate in a fifth grade science class taught by Nancy Chung, a teacher at Hicks Elementary School in the city of Irvine (see Figure 3-1). Her students joined the attendees at their tables in the Beckman Center to help the adults through the lesson. This lesson, along with the “Poster Session on Science Investigations” that is described below, engendered considerable subsequent discussion among participants throughout the convocation about the success of these approaches to teaching and learning, the critical role of teachers in making these kinds of lessons accessible and interesting to students, and how science education in California might be changed if such approaches were to be adopted statewide. 25

26 NURTURING AND SUSTAINING EFFECTIVE PROGRAMS FIGURE 3-1  Fifth grade teacher Nancy Chung leading a hands-on science lesson for her students and convocation participants. Photo courtesy of Sue Neuen.

SCIENCE EDUCATION IN ACTION 27 This is a lesson that had the potential to get messy, Chung said, but her attitude was, “Why not? Students need to have fun in the classroom. That’s my motto. Keep the students engaged and get their hands dirty, because that’s when they learn the most.” Keep the students engaged and get their hands dirty, because that’s when they learn the most. —Nancy Chung The objectives of the lesson were to identify the state of matter of an unknown substance called “Oobleck,” understand what scientists do when faced with an unknown substance, and discover that Oobleck is a “non-Newtonian fluid” that has the properties of both a liquid and a solid. To the theme music of Mission Impossible, she announced to her students, “We’re here today on a very special mission. We have been asked to identify a mysterious substance that I’m holding in my hand right now. This mysterious substance has so many scientists completely baffled. We do not have an official name for it yet, but for now they’re calling it ‘the Oobleck,’ named after the mysterious precipitation from Dr. Seuss’s book. It is our duty today as young scientists to contribute our input from our tests and our observations. Are you ready for this challenge?” Chung began with a quick review of the characteristics of solids, l ­ iquids, and gases. At her school, students use a Smartboard, an inter­ active learning tool, to explore the properties of molecules in a solid, l ­ iquid, and gaseous state. “Do you remember that, boys and girls?” Chung asked. “Who can tell me what the molecules were doing in a solid state?” According to one student, they were vibrating very slightly but not mov- ing fluidly. “How about at a liquid state? When the water was at room temperature, what were the molecules doing?” One student said that they still kind of stuck together but could move around, and another pointed out that a liquid takes the shape of a container. “What about a gas? You remember moving the [Smartboard] temperature up on the thermometer, and what would happen? The water would start to boil and you would see the water vapors coming up. What was happening to the molecules?” One student said that the molecules were moving very fast and going off the screen, and another said that a gas was very compressible. “Whereas the solid—can you compress that?” Chung asked. Not really, the students replied.  Additional information about this classroom activity is available at http://­ lawrencehallofscience.org/gems/GEM200.html.

28 NURTURING AND SUSTAINING EFFECTIVE PROGRAMS Chung held up a green substance in a plastic container. “We’re going to look at this substance.” First she had the students guess whether the substance was a solid, liquid, or gas, and each put his or her name on a Post-it note and placed the note on charts labeled with those headings. The students then put plastic tablecloths on their tables. “To find out whether it is a solid, liquid, or gas, we’re going to run a series of tests,” said Chung. Each group had a sheet and a pencil to record the results of the tests, which were described on handouts that accompanied the Oobleck. “What would you like to find out [about this substance]?” Chung asked. Students replied: What is Oobleck made of? Where is it from? How thick is it? “Do you mean its consistency?” Chung asked. “Yes,” the student said. “I have a question for you,” Chung said. “Is Oobleck a solid, liquid, or gas?” Then she invited students to write down any additional questions they wanted to answer with their tests, along with whether it is a solid, liquid, or gas. Chung next asked the class what happens after a testable question is written down. A student responded that the next step is to generate a hypothesis. “Can you tell us what a hypothesis is?” asked Chung. The stu- dent responded that it is a prediction about what you think will happen. “Is it any kind of random prediction?” asked Chung. No, the students said, it is an educated prediction with reasons why you think something will happen. The students then began doing a number of tests, including the pour test, the poke test, the squeeze test, the sink test, the roll test, and tests they devised on their own. Chung led them through the initial poke test. Carefully, they used chopsticks to stab the Oobleck without knocking over their containers. “Was that weird?” Chung asked. “I thought it was liquid. Shouldn’t it go all the way through? What did it feel like? Somebody raise their hand and tell me what it felt like.” “Like there was some kind of substance at the bottom,” one student said. Others said that the chopstick went through the top layer very easily and kind of got stuck toward the bottom. She had the students write down the time and date, since “scientists always write down when they are doing an experiment, what day it is and what time it is.” She then had them slowly press their chopsticks into the Oobleck, demonstrating that the chopsticks could pass slowly through the substance. They wrote down what they did and what they observed. They then wrote down what they thought the Oobleck was based on that test. “And if you think it’s more than one thing, go ahead and circle that one,” Chung said. While the students began performing additional tests on the Oobleck, Chung described a technique she uses to maintain the focus on specific

SCIENCE EDUCATION IN ACTION 29 learning objectives. Classrooms in her district have signs bearing the acro- nym SWBAT, which stands for “students will be able to.” Because of the presence of the word “bat” in the acronym, Chung occasionally sings the Batman theme song and then asks her students to read the lesson objec- tive in unison. She demonstrated, and the students read: “To classify the unknown substance as a solid, liquid, or gas, using prior knowledge of the characteristics of the states of matter.” After about 10 minutes, Chung said, “I’m so sorry to interrupt your having so much fun. I’m going to ask you a question. Raise your hand if you would like to change your answer. If you originally said, ‘I think Oobleck is a liquid,’ raise your hand if you think it might be something else. Lots of hands. Now raise your hand if you’re thinking, ‘I’m going to stick to my answer.’ Nobody? Okay. Discuss with your tablemates what you think your conclusion is. Do you think it’s a solid? Is it a liquid? Is it a gas? Or is it more than one thing?” “Please write down what you think the Oobleck is. And did you know that scientists use observations to collect data, but must agree on the accuracy of their data with other scientists? Then flip your papers to the very back.” On a Venn diagram on the last page of their handouts, the students wrote the word Oobleck where they thought it should go, including in areas of the graph that include more than one category. “If you think it’s all three, then write Oobleck in the middle, where all three overlap.” Then she directed their attention to the words “Something to Think About” at the bottom of the page. “Does anyone know what Oobleck is made of? Do you think I went to a super fancy science store and said, ‘Please give me the Oobleck ingre- dients’?” But several students already knew that Oobleck was a mixture of corn starch, water, and green food coloring. Chung said that they were right, and that the corn starch and water were mixed in about a two to one ratio. “I’m thinking of ratio. What if I did the two to one ratio but instead of corn starch to water I did water to corn starch? What would happen?” “It would be more liquidy,” one student said. Another said that it would not be as hard when it was poked. A third said it would flow faster when poured. “These are all very good answers. Maybe you can try that at home.” The second question under “Something to Think About” was “Why do these simple ingredients form such a mysterious substance?” “Because you have two different things that have been combined,” one student said. “What was the previous unit that we covered that talked about some- thing like that?” Chung asked. “The mixtures and solutions unit,” a student replied.

30 NURTURING AND SUSTAINING EFFECTIVE PROGRAMS Chung said: “We talked about the difference between a physical r ­ eaction and a chemical reaction. What do you think this is? Do you think it’s the result of a chemical reaction or a physical reaction?” A chemical r ­ eaction, one of the students answered. Sometimes I tell you I know everything, but of course I don’t, because I’m a lifelong learner, too. —Nancy Chung “Raise your hand if you think it’s a chemical reaction,” Chung said. The majority of students raised their hands. “Now raise your hand if you think it’s a physical reaction. Hmm. How can you tell? Is there something you can do to test that, besides look it up on the Internet or ask a teacher? If it’s a physical reaction, can you somehow separate it and get it back into its original form? So I wonder if I could get this back to its original form. Nicholas, what do you think?” “You could evaporate the water,” her student said, leaving just the corn starch and the food coloring. That would work for a physical reaction, Chung said. “I don’t know if you could separate the corn starch and the food coloring,” she added. “There’s probably a way, but I don’t know. But what do I tell you all the time? As a teacher, do I know everything? No, I don’t know everything. Sometimes I tell you I know everything, but of course I don’t, because I’m a lifelong learner, too. So what can we do if we’re faced with a problem or a question that we don’t know? Does the learning stop here? Or are you going to take it to the next level and find out why the corn starch and water combine in such a mysterious way? Or what causes corn starch to behave that way. How you can separate those? Are those questions that you can be thinking of? So that’s where your line of learning, your ‘LOL,’ comes in.” So what can we do if we’re faced with a problem or a question that we don’t know? Does the learning stop here? —Nancy Chung “We’re running out of time. But there are more questions, like are there other substances that have similar characteristics to the Oobleck? I heard someone say quicksand. So the next time you’re stuck in quick- sand, what can you do if you want to get out? So brainstorm with the

SCIENCE EDUCATION IN ACTION 31 adults at your table about some substances with properties like those of the Oobleck. Come up with different industries where substances like Oobleck can come into play, whether it’s in the medical field, the construc- tion field, transportation, communication, agriculture, energy, packaging, defense, or space exploration. So go ahead and talk about that and we’ll clean up afterwards.” “Thank you. I hope you had a lot of fun playing—I mean ­learning— with the Oobleck.” Excerpts from the California Fifth Grade Science Standardsa 1-a Students know that during chemical reactions the atoms in the reactants rearrange to form products with different properties. 1-f  Students know differences in chemical and physical properties of sub- stances are used to separate mixtures and identify compounds. 1-g  Students know the properties of solid, liquid, and gaseous substances. Investigation and Experimentation Scientific progress is made by asking meaningful questions and conducting careful investigations. As a basis for understanding this concept and addressing the content in the other three strands, students should develop their own questions and perform investigations. Students will a. Classify objects (e.g., rocks, plants, leaves) in accordance with appropriate criteria. b. Develop a testable question. c.  Plan and conduct a simple investigation based on a student-­developed ques- tion and write instructions others can follow to carry out the ­procedure. d. Identify the dependent and controlled variables in an investigation. e. Identify a single independent variable in a scientific investigation and explain how this variable can be used to collect information to answer a question about the results of the experiment. f. Select appropriate tools (e.g., thermometers, meter sticks, balances, and graduated cylinders) and make quantitative observations. g. Record data by using appropriate graphic representations (including charts, graphs, and labeled diagrams) and make inferences based on those data. h. Draw conclusions from scientific evidence and indicate whether further information is needed to support a specific conclusion. i. Write a report of an investigation that includes conducting tests, collecting data or examining evidence, and drawing conclusions. aThe California Science Standards for Grades K-12 are available at http://www.cde.ca.gov/ BE/ST/SS/documents/sciencestnd.pdf.

32 NURTURING AND SUSTAINING EFFECTIVE PROGRAMS POSTER SESSION ON SCIENCE INVESTIGATIONS Following the science lesson, the convocation broke for a poster s ­ ession featuring the fourth through sixth grade students at two local elementary schools, La Veta Elementary and Nohl Canyon Elementary (see Figure 3-2). The questions investigated by the students were • Which objects will be attracted to the charged balloon? • How can the dry mixture be separated? • What happens when the chemicals are combined? • What can you tell about the age of the tree by observing the rings? • How are topographic maps made? • How does the angle of the ramp affect the speed of the car? • Can you detect the magnetic field in each box? • What will happen if one light bulb is removed from the series c ­ ircuit and the parallel circuit? • What will happen when a flood occurs where there is an existing water source on a slope? FIGURE 3-2  Students demonstrate their work in science to convocation partici- pants. Photo courtesy of Maureen Allen.

SCIENCE EDUCATION IN ACTION 33 Convocation attendees walked from poster to poster as teams of stu- dents explained how they conducted their lessons and what they learned. At one of the posters, Megan, a sixth grade student from La Veta Elemen- tary School, demonstrated the acceleration of a car down a ramp. She and her two partners had used a light gate to measure the time a toy car spent rolling down a ramp given different inclinations of the ramp. They then calculated the car’s speed according to the formula s = d × t, where s equals speed, d is distance, and t is time. As the angle of the ramp increased, the speed of the car did so, too. “Hands-on science goes in your mind better,” Megan said. “If it’s just in a textbook, it’s harder to absorb.” Hands-on science goes in your mind better. If it’s just in a textbook, it’s harder to absorb. —Megan, sixth grader

Next: 4 Exemplary Programs »
Nurturing and Sustaining Effective Programs in Science Education for Grades K-8: Building a Village in California: Summary of a Convocation Get This Book
×
 Nurturing and Sustaining Effective Programs in Science Education for Grades K-8: Building a Village in California: Summary of a Convocation
Buy Paperback | $50.00 Buy Ebook | $40.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

K-8 science education in California (as in many other parts of the country) is in a state of crisis. K-8 students in California spend too little time studying science, many of their teachers are not well prepared in the subject, and the support system for science instruction has deteriorated. A proliferation of overly detailed standards and poorly conceived assessments has trivialized science education. And all these problems are likely to intensify: an ongoing fiscal crisis in the state threatens further cutbacks, teacher and administrator layoffs, and less money for professional development.

A convocation held on April 29-30, 2009, sought to confront the crisis in California science education, particularly at the kindergarten through eighth grade level. The convocation, summarized in this volume, brought together key stakeholders in the science education system to enable and facilitate an exploration of ways to more effectively, efficiently, and collectively support, sustain, and communicate across the state concerning promising research and practices in K-8 science education and how such programs can be nurtured by communities of stakeholders.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!