conflict that contribute to increased risk of infectious disease. Certain categories of infectious diseases tend to increase during war, according to workshop speaker Barry Levy of Tufts University; these include diarrheal diseases and acute respiratory infections, as well as measles, malaria, meningococcal disease, and tuberculosis. In the chapter’s second paper, Levy discusses major causes—apart from injury—that contribute to the increased incidence of infectious diseases during wartime: reduced availability of health services, environmental damage, and forced migration. Interestingly, Levy notes that whereas one might expect HIV transmission to increase during war due to concomitant increases in several risk factors for its transmission, “several studies have demonstrated that HIV incidence has generally decreased during war—only to increase again after conflict has ended.” Moreover, he adds, “there have been many successful HIV/AIDS prevention and treatment programs during armed conflict.”

Absent the cessation of armed conflict, the war-related burden of infectious disease can be addressed through attention to specific war-associated risk factors, as well as through a host of measures (e.g., surveillance, preparedness) that apply to any high-risk situation, Levy explains. He also notes the importance of protecting health care workers and preserving health-supporting infrastructure, which may be supported by maintaining their neutrality both during war and in its aftermath.

Like travel, globalized trade is vast, rapid, on the rise, and a significant risk factor for infectious disease emergence. In the chapter’s third essay, workshop speaker Ann Marie Kimball, of the University of Washington, and co-author Jill Hodges present case studies of several emerging infectious diseases, including H5N1 influenza and bovine spongiform encephalopathy (BSE), and their relationship to “risky” trade practices in food production and medicine. “While microbial risks have been globalized along with commerce, the corresponding health and protective measures for the most part have not,” the authors observe. The International Health Regulations (IHR) 2005 “provides some important safeguards to help limit the international spread of infectious disease,” they note, but these regulations require support for both capacity building and community building if their intent is to be fulfilled.

Responding to some of the disease threats described in the previous three essays is the daunting task taken on by workshop speaker David Acheson of the Food and Drug Administration (FDA). He describes the agency’s response to two recent challenges to the security of the U.S. food supply—the 2008 outbreak of Salmonella Saintpaul and the deliberate contamination of imported wheat gluten with melamine—in his contribution to this chapter. He also discusses changes in FDA’s food security efforts to respond to such threats by seeking to understand where and when they arise, to anticipate their potential to spread globally, and to use risk-based inspections to detect them before an outbreak occurs in the United States; these include efforts under way to increase the FDA’s presence in foreign countries, to develop model systems for risk-based inspections, and to make use

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement