• What fundamental biological questions are ready for major advances in understanding? What would be the practical result of answering those questions? How could answers to those questions lead to high impact applications in the near future?

  • How can a fundamental understanding of living systems reduce uncertainty about the future of life on earth, improve human health and welfare, and lead to the wise stewardship of our planet? Can the consequences of environmental, stochastic or genetic changes be understood in terms of the related properties of robustness and fragility inherent in all biological systems?

  • How can federal agencies more effectively leverage their investments in biological research and education to address complex problems across scales of analysis from basic to applied? In what areas would near term investment be most likely to lead to substantial long-term benefit and a strong, competitive advantage for the United States? Are there high-risk, high pay-off areas that deserve serious consideration for seed funding?

  • Are new funding mechanisms needed to encourage and support crosscutting, interdisciplinary or applied biology research?

  • What are the major impediments to achieving a newly integrated biology?

  • What are the implications of a newly integrated biology for infrastructural needs?

  • How should infrastructural priorities be identified and planned for?

  • What are the implications for the life sciences research culture of a newly integrated approach to biology? How can physicists, chemists, mathematicians and engineers be encouraged to help build a wider biological enterprise with the scope and expertise to address a broad range of scientific and societal problems?

  • Are changes needed in biology education—to ensure that biology majors are equipped to work across traditional subdisciplinary boundaries, to provide biology curricula that equip physical scientists and engineers to take advantage of advances in biological science, and to provide nonscientists with a level of biological understanding that gives them an informed voice regarding relevant policy proposals? Are alternative degree programs needed or can biology departments be organized to attract and train students able to work comfortably across disciplinary boundaries?

The committee found that the third bullet, “How can federal agencies more effectively leverage their investments in biological research and education to address complex problems across scales of analysis from basic to applied? In what areas would near term investment be most likely to lead to substantial long-term benefit and a strong, competitive advantage for the United States?” provided a compelling platform from which to consider each of the questions, and a robust framework upon which to organize its conclusions. Thus, the committee’s overarching recommendation is that the most effective leveraging of investments would come from a coordinated, interagency effort to encourage



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement