BOX 4.7

The International Genetically Engineered Machine (iGEM) Competition

Every November for the last five years, hundreds of dedicated young synthetic biologists from around the world have gathered at MIT for the annual iGEM competition. Modeled after popular robotic design competitions, iGEM brings together teams of students whose challenge is to use standard biological parts to design and build a novel genetic-encoded machine that carries out an interesting or useful function. In 2008, 84 teams from over 20 countries participated. Most teams are from undergraduate colleges and universities, but more recently, high school teams have also begun to participate.

The iGEM competition has become a major force in both education and innovation. Scores of top students are drawn to the excitement of the new field of synthetic biology, a field that is revolutionizing how biological systems are viewed and has the potential to solve many societal problems. Students come from biology, computer science, engineering, and many other fields, but work together to formulate their own projects. All the standard biological parts they design are submitted to the iGEM parts registry and projects are described on open websites. The teams gather at MIT to present their work to a panel of judges.

iGEM projects rival those of professional research laboratories and biotech companies in sophistication, and frequently exceed them in innovative thinking. Projects have included design of bacteria that sense arsenic, a bacterial replacement for blood, and a synthetic cellular organelle that could be used to house biofuel pathways.

The iGEM competition provides a model for future modes of education in biology. Unlike many summer research projects, iGEM projects are emergent—students come up with their own ideas and work as a team to develop and execute them. The creative challenge, competitive framework, and required self-investment results in extraordinary levels of motivation and innovation. The forward-looking iGEM team projects may foreshadow how biology will be practiced and applied in the future.

solved, and resources brought to bear at the right time to keep the project moving forward. Close interaction between larger, problem-oriented projects and the more decentralized basic research enterprise will be critical––and mutually beneficial––as discoveries will continue to emerge from traditional approaches, and advances that benefit all researchers will emerge from the large projects. The New Biology Initiative would represent a daring addition to the nation’s research portfolio, but the potential benefits are considerable: an immensely more productive life sciences research community; new bio-based industries; and, most importantly, innovative means to produce food and biofuels sustainably, monitor and restore ecosystems, and improve human health.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement