Cover Image


View/Hide Left Panel

provides an overview of freshwater resources and what is known about how climate change will affect freshwater availability. We also indicate research needs and outline some of the fundamental challenges of making projections of climate impacts on water resources and governance strategies.


Historically, the United States has relied heavily on surface water, and to a lesser extent groundwater, to meet its freshwater needs. It would be easy to assume that precipitation is the most critical factor in determining surface water availability, and thus future water supplies will be controlled almost entirely by changes in average annual precipitation. In reality, however, the relationship between climate change and water supplies is more complex. For example, climate change directly affects temperatures, and hence evaporation from soil and water surfaces, plant transpiration, and mountain snowmelt. The average intensity, seasonality, mode (i.e., rain or snow), and geographic distribution of precipitation are also important for water management decisions. All of these characteristics are closely connected to storm patterns, which are modulated by regional and global patterns of variability on a range of time scales, and both storm patterns and patterns of variability may shift as climate change progresses (e.g., Kundzewicz et al., 2007; Lemke et al., 2007; Trenberth et al., 2007). Moreover, water cycling through soils, land cover, and geologic formations, as well as rainfall intensity and amount, all affect the volume of surface runoff as well as infiltration rates and groundwater recharge, making the response of water resource systems to climate change complex. Changes in land cover and land use will complicate projections of water resource availability as well as the detection and attribution of climate-driven trends; for example, land degradation with accompanying vegetation changes can be a dominant driver of changes in stream flow (Wilcox et al., 2008). In many coastal regions, sea level rise (see Chapter 7) will affect surface and groundwater resources.

The complex processes involved in the water cycle, combined with uncertainties in model projections of future precipitation changes, prevent any easy conclusions about how climate change will affect regional water supplies. Even if model projections do not show any significant changes in total precipitation, for example, shifts in seasonal precipitation patterns or average storm intensity may be critical for water-dependent sectors like agriculture. As discussed in Chapter 6 and the next section below, a higher fraction of rainfall is expected to fall in the form of heavy precipitation events as temperatures increase, and in many locations such a shift has already been observed (see also CCSP, 2008f; Bates and Kundzewicz, 2008). Higher temperatures are also projected to increase soil and surface water evaporation, producing overall drier conditions even

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement