Cover Image


View/Hide Left Panel

tries, thus magnifying rather than reducing existing inequities in food availability and security. The IPCC also concludes with medium to low confidence that, on the whole, global food production is likely to decrease with increases in average temperatures above 5.4°F (3°C).

Regional assessments of agricultural impacts in the United States (e.g., CCSP, 2008b, and references therein) suggest that over the next 30 years, the benefits of elevated CO2 will mostly offset the negative effects of increasing temperature (see below for limits in modeling conducted to date). In northern regions of the country, many crops may respond positively to increases in temperature and atmospheric CO2 concentrations. In the Midwest corn belt and more southern areas of the Great Plains, positive crop responses to elevated CO2 may be offset by negative responses to increasing temperatures; rice, sorghum, and bean crops in the South would see negative growth impacts (CCSP, 2008b). In California, where half the nation’s fruit and vegetable crops are grown, climate change is projected to decrease yields of almonds, walnuts, avocados, and table grapes by up to 40 percent by 2050 (Lobell et al., 2007). As temperatures continue to rise, crops will increasingly experience temperatures above the optimum for growth and reproduction. Adaptation through altered crop types, planting dates, and other management options is expected to help the agricultural sector, especially in the developed world (Burke et al., 2009; Darwin et al., 1995). However, regional assessments for other areas of the world consistently conclude that climate change presents a serious risk to critical staple crops in sub-Saharan Africa, where adaptive capacity is expected to be less than in the industrialized world (Jones and Thornton, 2003; Parry et al., 2004). Parts of the world where agriculture depends on water resources from glacial melt, including the Andean highlands, the Ganges Plain, and portions of East Africa, are also at risk due to the worldwide reduction in snowpack and the retreat of glaciers (Bradley et al., 2006; Kehrwald et al., 2008; also see Chapter 8).

While models of crop responses to climate change have generally incorporated shifts in average temperature, length of growing season, and CO2 fertilization, either singly or in combination, most have excluded expected changes in other factors that also have dramatic impacts on crop yields. These critical factors include changes in extreme events (such as heat waves, intense rainfall, or drought), pests and disease, and water supplies and energy use (for irrigation). Extreme events such as heavy downpours are already increasing in frequency and are projected to continue to increase (CCSP, 2008b; Rosenzweig et al., 2001). Intense rainfalls can delay planting, increase root diseases, damage fruit, and cause flooding and erosion, all of which reduce crop productivity. Drought frequency and intensity are likely (Christensen et al., 2007) to increase in several regions that already experience water stress, especially in developing

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement