Cover Image


View/Hide Left Panel

climate and marine population dynamics are needed to enhance model frameworks for fisheries management. In addition, there is considerable uncertainty about differences in sensitivity among and within species to ocean acidification (NRC, 2010f). This inevitable consequence of increasing atmospheric CO2 is poorly understood, yet global in scope. Most fisheries are subject to other stressors in addition to warming, acidification, and harvesting, and the interactions of these other stresses need to be analyzed and incorporated into models. Finally, these efforts need to be linked to the analysis of effective institutions and policies for managing fisheries.

Expand observing and monitoring systems. Satellite, aircraft, and ground-based measures of changes in crops yields, stress symptoms, weed invasions, soil moisture, ocean productivity, and other variables related to fisheries and crop production are possible but not yet carried out systematically or continuously. Monitoring of the environmental and social dynamics of food production systems on land and in the oceans is also needed to enable assessments of vulnerable systems or threats to food security. Monitoring systems will require metrics of vulnerability and sustainability to provide early warnings and develop adaptation strategies.

Assess food security and vulnerability in the context of climate change. Effective adaptation will require integration of knowledge and models about environmental as well as socioeconomic systems in order to project regional food supplies and demands, understand appropriate responses, to develop institutional approaches for adapting under climate variability and climate change, and to assess implications for food security (NRC, 2009k). Scenarios that evaluate implications of climate change and adaptation strategies for food security in different regions are needed, as are models that assess shifting demands for meat and seafood that will influence price and supply. Approaches, tools, and metrics are needed to assess the differential vulnerability of various human-environment systems so that investments can be designed to reduce potential harm (e.g., through interventions such as the development of new crop varieties and technologies, new infrastructure, social safety nets, or other adaptation measures). A concerted research effort is needed both for conducting assessments and to support the development and implementation of options for adaptation. Surprisingly, relatively little effort has been directed toward identification of geographic areas where damages to agriculture or fisheries could be caused by extreme events (hurricanes, drought, hypoxia); where there is or will be systematic loss of agricultural area due to sea level rise, erosion, and saltwater intrusion; or where there will be changes in average conditions (e.g., extent of sea ice cover, and warming of areas that are now too cold for agriculture) that could lead to broad-scale changes—positive or negative—in the type and manner of agricultural and fisheries production.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement