line vehicles, GREET’s share of reformulated gasoline in total gasoline factor was set to 100%. For conventional and reformulated gasoline vehicles using petroleum derived from tar sands oil, GREET’s share of oil sands products in crude oil refineries was set to 100%. GREET assumes that in 2005 an 80% share of dry mill corn ethanol production (this increases to 90% by 2020). In evaluating E10 and E85 fueled vehicles from corn ethanol feedstock, this percentage was adjusted. For E10 and E85 from dry corn this was set to 100% while from wet corn, to 0% (or 100% wet milling plants). To evaluate the compression ignition direct injection low-sulfur diesel combination, the share of low-sulfur diesel in total diesel use was specified as 100% for 2005. For the other vehicle and fuel combinations, default GREET values were left unchanged. The ethanol yield factors were verified against existing literature and electricity mixes for the two time periods received slight adjustments based on the U.S. Energy Information Administration’s Annual Energy Outlook. The energy and emission factors for the different vehicle types (LDA, LDT1, and LDT2) in 2005 are shown in Table D-3, Table D-4, and Table D-5 and for 2020 in Table D-6, Table D-7, and Table D-8.

2030 Fuel Economy and Emission-Factor Adjustments

The implementation of 35 miles per gallon fuel economy standards for 2030 requires an adjustment to GREET default 2020 emission factors. The GREET model assumes fuel economies between 20 and 30 miles per gallon for conventional gasoline and E85 light-duty automobiles in 2020. For light-duty trucks the fuel economy ranges are even lower (20-24 miles per gallon for LDT1 and 17-20 miles per gallon for LDT2). For 2030, all energy and emission factors are adjusted based on the GREET default fuel economies and the expected 35 miles per gallon standard. Fuel and feedstock factors from GREET are reduced by the percentage reduction of default and 35 mile per gallons economies (for example, if the 2020 fuel economy is specified as 24 miles per gallon then the fuel and feedstock emission factors for 2020 are multiplied by 24/35 to determine the adjusted 2030 factors). This is based on the assumption that with an increase in fuel economy, a proportional reduction is needed in fuel production, which results in lower feedstock requirements. Vehicle operation combustion factors are also reduced using the same methodology. VOC evaporative losses and PM tire and brake wear factors were left unchanged from GREET default values as well as vehicle manufacturing. Both automobiles and light-duty trucks were assessed the adjusted factors. Trucks show the largest changes from default to the 35 miles per gallon standard due to relatively low GREET estimated 2020 fuel economies. All vehicles that had fuel economies greater than 35 miles per gallon in GREET in 2020 were not adjusted.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement