FIGURE 3.1 The minimum detected or detectable signal in flux density versus the year of measurement. The sensitivity is proportional to the temperature of the receiver system and inversely proportional to the collecting area and the square root of both bandwidth and integration time. For measurements after year 1990, an integration time of 12 hours is assumed. The rapid improvement over time is due to system improvements, including the decrease in system temperature (solid-state technology), the increase in collecting area (cost and construction efficiency), and the increase in bandwidth and integration time (electronic and digital technology). The improvement from 1933 to 1983 is about 10 orders of magnitude, a halving time of less than 2 years: a performance improvement similar to that described by Moore’s law. Acronyms in the figure are defined in Appendix F. Figure adapted and updated from J.M. Moran, “Peter Mezger and the Development of Radio Astronomy in the U.S. and Germany, and the Discovery of Radio Recombination Lines,” pp. 475-488 in The Nuclei of Normal Galaxies, Lessons from the Galactic Center, Proceedings of the NATO Advanced Research Workshop, NATO Advanced Science Institutes Series C, Vol. 445, A. Harris and R. Genzel, eds., Kluwer, Dordrecht (1994).

FIGURE 3.1 The minimum detected or detectable signal in flux density versus the year of measurement. The sensitivity is proportional to the temperature of the receiver system and inversely proportional to the collecting area and the square root of both bandwidth and integration time. For measurements after year 1990, an integration time of 12 hours is assumed. The rapid improvement over time is due to system improvements, including the decrease in system temperature (solid-state technology), the increase in collecting area (cost and construction efficiency), and the increase in bandwidth and integration time (electronic and digital technology). The improvement from 1933 to 1983 is about 10 orders of magnitude, a halving time of less than 2 years: a performance improvement similar to that described by Moore’s law. Acronyms in the figure are defined in Appendix F. Figure adapted and updated from J.M. Moran, “Peter Mezger and the Development of Radio Astronomy in the U.S. and Germany, and the Discovery of Radio Recombination Lines,” pp. 475-488 in The Nuclei of Normal Galaxies, Lessons from the Galactic Center, Proceedings of the NATO Advanced Research Workshop, NATO Advanced Science Institutes Series C, Vol. 445, A. Harris and R. Genzel, eds., Kluwer, Dordrecht (1994).

of 10 billion in 70 years, and there will be another improvement by a factor of 1,000 from the Very Large Array (VLA) to the Square Kilometer Array (SKA) when it is built. (See Table 3.1 in §3.2, “Radio Observatories and Radio Telescopes,” for the characteristics of the newer instruments.)

The current scientific questions that are motivating the construction of these new telescopes are no less exciting than those that were resolved in the past. Obvious



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement