3
Ecological Effects of Bivalve Mariculture

The role of suspension-feeding bivalves in estuarine and marine ecosystems has been extensively documented through research in ecology, physiology, biogeochemistry, mariculture, interdisciplinary marine science, and fisheries science. Suspension-feeding bivalve molluscs consume at the lowest trophic level, feeding largely as herbivores (Duarte et al., 2009). This chapter is divided into three sections to characterize: (1) the biological activities of molluscs (whether wild or cultured) and the effects of their biogeochemical modifications and habitat provision; (2) the incidental impacts of bivalve mariculture operations on multiple components of the ecosystem caused by mariculture structures and activities and by the biological activities of the molluscs; and (3) consequences of actions taken by culturists to alter ecological interactions purposely to manage the effects of pests, competitors, and predators on mariculture systems. The purpose of these sections is to illustrate issues that have been or could be addressed in best management practices—a complete description of the ecosystem services provided by molluscs in both natural systems and in mariculture is provided in Chapter 7 (also see National Research Council, 2009). The last section of the chapter (Uncertainties, Unknowns, and Recommended Research) summarizes issues where additional research will be necessary to determine ecosystem impacts and develop effective mitigation approaches.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 39
3 Ecological Effects of Bivalve Mariculture The role of suspension-feeding bivalves in estuarine and marine eco - systems has been extensively documented through research in ecology, physiology, biogeochemistry, mariculture, interdisciplinary marine sci - ence, and fisheries science. Suspension-feeding bivalve molluscs consume at the lowest trophic level, feeding largely as herbivores (Duarte et al., 2009). This chapter is divided into three sections to characterize: (1) the biological activities of molluscs (whether wild or cultured) and the effects of their biogeochemical modifications and habitat provision; (2) the inci - dental impacts of bivalve mariculture operations on multiple components of the ecosystem caused by mariculture structures and activities and by the biological activities of the molluscs; and (3) consequences of actions taken by culturists to alter ecological interactions purposely to manage the effects of pests, competitors, and predators on mariculture systems. The purpose of these sections is to illustrate issues that have been or could be addressed in best management practices—a complete description of the ecosystem services provided by molluscs in both natural systems and in mariculture is provided in Chapter 7 (also see National Research Coun- cil, 2009). The last section of the chapter (Uncertainties, Unknowns, and Recommended Research) summarizes issues where additional research will be necessary to determine ecosystem impacts and develop effective mitigation approaches. 

OCR for page 39
0 ECOSYSTEM CONCEPTS FOR SUSTAINABLE BIVALVE MARICULTURE BIOLOGICAL EFFECTS OF MOLLuSCS: BIOGEOCHEMICAL CyCLING AND HABITAT PROvISION Benthic suspension feeders, such as many species of bivalve molluscs, influence the nutrient and organic coupling of benthic and pelagic sys- tems (Dame, 1996) through their ability to filter a wide size range of par- ticles and deposit organic wastes that sink to the bottom (biodeposition). Suspension-feeding bivalves perform this function in a range of habitats and physiographic conditions (e.g., estuaries, lagoons, coastal oceanic sys- tems) where they filter out and deposit significant amounts of suspended material, as well as excrete dissolved nutrients. In estuarine systems, the influence of benthic suspension-feeding bivalves on benthic-pelagic cou- pling, turbidity, nutrient remineralization, primary production, deposition, and habitat complexity has been well documented (reviewed in Dame and Olenin, 2005). Kaiser (2001) reviews the effects of molluscan cultivation on the ecology of systems, identifying a similar set of mechanisms of influ- ence, and concludes that such processes have a generally positive influence on the overall water quality of a system. Suspension-feeding bivalves also drive many other biogeochemical processes and cycles, which are well described for intertidal oysters by Dame (2005). Nutrient Dynamics Molluscs influence nutrient dynamics through direct excretion and indirectly through microbially mediated remineralization of their organic deposits in the sediments (McKindsey et al., 2006a). Therefore, nutrient regeneration is related to the abundance and location (shallow versus deep water) of bivalves in a system. The extent to which this affects overall nutri- ent budgets and thus primary production is related to the system flushing rate and residence time (Dame, 1996; Newell et al., 2005). The subsequent proportions of elements in the system will influence the levels of recycling and possibly result in one or more being limited (Dame, 1996). The majority of studies of bivalve effects on nutrient recycling have focused on nitrogen because this is the most common nutrient-limiting biological production in marine and estuarine systems (Parsons et al., 1983; Howarth, 1988; National Research Council, 2000). Benthic bivalves are important contributors of nitrogen (usually in the form of ammo- nium, NH4+) to both subtidal and intertidal systems. Nixon et al. (1976) conclude that nitrogen flux across oyster reefs is highly variable and is heavily influenced by tidal flow. Dame (1986) reviews a body of work relating to nutrient fluxes involving Crassostrea gigas in northern France and concludes that 15–40% of nitrogen in the system was derived from the oysters. In addition, measured values were always higher than the estimated values, likely due to remineralization occurring in adjacent

OCR for page 39
 ECOLOGICAL EFFECTS OF BIVALVE MARICULTURE sediments. The suggestion that macroalgal cover of mussel beds will intercept nitrogen (Asmus and Asmus, 1991), thereby making it unavail - able for phytoplankton production, has also been proposed for other systems (Mazouni et al., 1998; Lin et al., 2005; see Wadden Sea box in Chapter 4). In contrast, nitrogen is retained within some systems through direct recycling of nitrogen from bivalves (e.g., Crassostrea virginica) to phytoplankton (Dame and Libes, 1993; Newell et al., 2005). Numerous studies have demonstrated that nutrients derived from biodeposits and/ or excreted nitrogen serve to enhance growth of eelgrass and other sub- merged aquatic vegetation (see below). In the Marennes-Oléron culture region in France, Leguerrier et al. (2004) show that higher oyster production increased benthic-pelagic coupling, which in turn increased secondary production (in the form of meiofauna), providing food for juveniles of predatory nektonic species. Also, Mazouni (2004) and Newell et al. (2005) demonstrate that other planktonic organisms (bacteria, ciliates, and flagellates) can act as sources of nitrogen for bivalve molluscs in the absence of suitable autotrophic phytoplankton. Phosphorus is important to biological systems, and phosphorous bud- gets constructed in and around mollusc assemblages show considerable removal of this nutrient from the system through biodeposition. Asmus et al. (1990) demonstrate that mussel beds with large macroalgal popula - tions released less phosphate than beds without a large macroalgal com- ponent. Silicon is an important element for diatoms and can be limiting in systems dominated by diatoms. Bivalve molluscs contribute to recycling of silicate through transfer of this nutrient from the water column to the sediment with little being sourced from the bivalves (Prins and Smaal, 1994). Molluscs, such as mussels, may also selectively feed on components of particulate matter and thereby concentrate certain metals like copper in their pseudofeces (Allison et al., 1998). The production of pseudofeces in large quantities is an important mechanism by which bivalves couple the water column to the bottom (see review in Dame, 1996). Epifaunal bivalves (oysters and mussels) have a plastic response to increasing levels of plankton and detritus in the water column with ever-increasing filtration capacity and production of pseudofeces. However, this response is not observed in infaunal bivalves (clams and cockles), which regulate ingestion rates at high-seston concen- trations by adjusting clearance rates rather than by increasing production of pseudofeces (e.g., Foster-Smith, 1975; Bricelj and Malouf, 1984; Bricelj et al., 1984; Prins et al., 1991; Iglesias et al., 1996). Oysters and mussels are also known to tolerate relatively high levels of suspended inorganic particles and continue to filter and produce higher levels of biodeposits. The positive and negative feedback mechanisms observed in aquatic systems as a consequence of nutrient dynamics mediated by molluscs

OCR for page 39
 ECOSYSTEM CONCEPTS FOR SUSTAINABLE BIVALVE MARICULTURE have been the subject of numerous studies (Dame, 1996; Prins et al., 1998; Newell et al., 2005). Their high filtration capacity, rapid response to high levels of food (e.g., plankton), and relative permanence in aquatic systems give bivalves the ability to stabilize systems and enhance resilience to per- turbations (Jackson et al., 2001a; Newell, 2004). Large bivalve assemblages can regulate the abundance of phytoplankton in shallow seas (see Newell et al. [2005] and McKindsey et al. [2006a] for list of relevant studies), and intense filtering can reduce phytoplankton bloom intensity while extending the duration of less intense blooms (Herman and Scholten, 1990). Filtration and biodeposition of phytoplankton and other suspended materials by extensive beds of bivalves also reduce downstream trans - port, thereby moderating effects of excess nutrients or sedimentation in outlying waters. Thus, bivalves provide the system with a capacity to buffer against sudden perturbations (DeAngelis et al., 1986; Jackson et al., 2001a; Lotze et al., 2006). The large-scale removal of bivalves from a system has resulted in some well-documented shifts in system processes and has contributed to general degradation of water quality or, more appropriately, a reduction in the resilience of the system to perturbations like nutrient loading and sedimentation (e.g., oysters in Chesapeake Bay; see Newell et al. [2005, 2007] and Pomeroy et al. [2006]). Many estuaries, such as Chesapeake Bay, and coastal oceans suffer from eutrophication, in which excess nutrients enter waterways from land-based sources and atmospheric deposition (e.g., sewage treatment plants, farm animal wastes, agricultural use of fertilizers, industrial releases of nitrogen oxides or ammonia) and trigger massive blooms of phytoplankton and other algae. Phytoplankton blooms reduce water clarity and deplete the water of oxygen as they die and decompose. Bivalves can reduce excessive growth of phytoplankton and, at high density, can counteract symptoms of eutrophication, thereby improving local, and in some cases downstream, water quality. Yet many bivalve molluscs have been depleted by overfishing, especially oysters (Jackson et al., 2001a; Kirby, 2004; Lotze et al., 2006; Beck et al. 2009), but also clams (Peterson, 2002; Kraeuter et al., 2008) and scallops (Peterson et al., 2008). Consequently, augmenting suspension-feeding bivalves, preferably native, through restoration and mariculture has the potential to enhance suspension-feeding activity and controls in systems where natural popu - lations have been depleted (Jackson et al., 2001a). Biomineralization In addition to nutrient cycling, molluscs contribute to biogeochemical processes through shell formation, which captures carbon in the form of calcium carbonate and can lead to sequestration of carbon in marine

OCR for page 39
 ECOLOGICAL EFFECTS OF BIVALVE MARICULTURE sediments after natural mortality of wild molluscs or terrestrial burial of shells after consumption of wild-caught or cultured molluscs. The shells of molluscs (living and dead) accumulate in various types of structures in estuarine, coastal, and oceanic systems (Shumway and Kraeuter, 2000). Surface shell accumulations provide a range of ecosystem services, pri - mary among which are structural habitat (e.g., refuge, complexity) and erosion reduction (Coen and Grizzle, 2007). Shell is also an important source of sedimentary carbonate content. The carbonate budget of estuarine and coastal waters is now of con- cern because of extensive shell extraction (through mollusc harvesting and mining for construction), the prohibitive cost of long-term continu- ous substrate provisioning to support fisheries, and the loss of shell via reduced bivalve populations resulting from fishing and disease processes (Mann and Powell, 2007). Moreover, growing ocean acidification caused by increasing concentrations of atmospheric CO2 has serious implications for seawater carbonate chemistry (Brewer, 1997; Caldeira and Wickett, 2003; Feely et al., 2004; Doney et al., 2009). Recent studies have shown that bivalve growth, development, and survival are negatively affected by decreased pH (e.g., Berge et al., 2006; Fabry et al., 2008; Kurihara, 2008). The change in carbonate water chemistry and concomitant decrease in viability of bivalve molluscs potentially will reduce both the provision- ing and persistence of shell in coastal and estuarine systems, particularly those in high-latitude areas with low alkalinity seawater (Feely et al., 2004; Lee et al., 2006). Availability of abundant mollusc shells in the sur- face sediments can provide local buffering against increasing acidity. The importance of the interactions between ecological communities and sedimentary carbonate content was articulated in a conceptual model that described a positive feedback process between benthic molluscs and carbonate addition to the sediments. The taphonomic (process of fossiliza- tion) feedback hypothesis underlying this conceptual model (Kidwell and Jablonski, 1983) states that increasing shell content encourages settlement of calcifying organisms, and their deaths increase the rate of carbonate addition, forming a positive feedback process. Recent studies have shown that the interaction between carbonate content and community dynamics is critical to ecosystem dynamics in estuarine systems (Gutierrez et al., 2003; Powell et al., 2006; Powell and Klinck, 2007). The species benefit - ing most are the carbonate producers, particularly bivalves that, through their own deaths, provide a critical sedimentary constituent promoting the long-term survival of their species. Shell is an essential component of present-day estuarine and coastal ecosystems; however, it is not a stable resource (Powell et al., 2006). Shell must be continually renewed and will disappear rapidly if the processes that support this renewal are slowed or stopped. Carbonate loss possibly

OCR for page 39
 ECOSYSTEM CONCEPTS FOR SUSTAINABLE BIVALVE MARICULTURE exceeds gain in shallow-water marine ecosystems today (see discussion in Powell et al. [2006]). It is likely that current environmental conditions and commercial mariculture practices, when coupled with predicted changes, such as ocean acidification, will facilitate and accelerate carbonate loss in estuarine and coastal systems. Thus, management of shell-producing commercial species must also include management of the habitat that will maximize production of carbonate. Long-term sustainability of mollusc stocks depends upon the maintenance of a positive shell budget for car- bonate, as well as provision of habitat that supports recruitment, growth, and survival of bivalves. Mariculture of bivalve molluscs can contribute favorably to shell production and preservation in coastal ecosystems if the operators return the shell resource to the environment after harvest. How- ever, regulations requiring the return of shells to the estuarine, lagoonal, or coastal bottom after shucking may be required to achieve this goal. Habitat Creation and Maintenance Shell adds hard substrate and habitat complexity to soft substrates, thereby increasing species diversity (Wells, 1961; Larsen, 1985; Coen et al., 1999; Harding and Mann, 2000; 2001; Mann, 2000; Gutierrez et al., 2003) and enhancing recruitment and survival of bivalves (Haven and Whitcomb, 1983; Abbe, 1988; Kraeuter et al., 2003; Bushek et al., 2004; Green et al., 2004; Soniat and Burton, 2005). When present in significant amounts, shell adds bottom-habitat complexity to the ecosystem (Haven and Whitcomb, 1983; DeAlteris, 1988; Grizzle, 1990; Powell et al., 1995; Allen et al., 2005). Fish have been shown to associate with both biogenic and artificial structures on the bottom, such as eelgrass, bivalve reefs, and the legs of oil platforms, as a consequence of attraction to structured habitat for protection or feeding (Franks, 2000; Heck et al., 2003; Peterson et al., 2003; Coen and Grizzle, 2007; Horinouchi, 2007; Jablonski, 2008). Seagrasses are often considered to be an extremely important plant in estuaries and lagoons where they form emergent structural habitat for fish and invertebrates in these soft-sediment systems (Jackson et al., 2001b; Williams and Heck, 2001; Heck et al., 2003; Bostrom et al., 2006). Local improvements in water clarity induced by filter-feeding bivalves can promote the spread of eelgrass, especially to depths where light would otherwise be limiting (Dennison et al., 1993). Augmentation of nutrient concentrations in sediments can also stimulate eelgrass growth, as has been shown to occur for eelgrass growing alongside mussels in Europe, Florida, and southern California (Reusch et al., 1994, Reusch and Williams, 1998; Peterson and Heck, 1999; 2001a, b). Many estuaries on the west coast of the United States are flushed with relatively nutrient-rich ocean waters, and under these circumstances, eelgrass may not benefit as

OCR for page 39
 ECOLOGICAL EFFECTS OF BIVALVE MARICULTURE much from the additional nutrients released by bivalves (Dumbauld et al., 2009). Both the reduction of turbidity and fertilizing effects of bivalve molluscs have been demonstrated experimentally for modest densities (16 per m2) of hard clams (Mercenaria mercenaria) in a relatively oligotro- phic Long Island estuary (Carroll et al., 2008). Positive effects of a modest number of suspension-feeding bivalves are more likely to benefit eelgrass in relatively oligotrophic water bodies, where functional enhancement of water clarity may be achieved without a huge increase in filtering capacity (Carroll et al., 2008). IMPACTS OF MARICuLTuRE OPERATIONS ON ECOSySTEMS Organic Loading by Cultured Bivalve Biodeposits Several factors contribute to the rate of production of biodeposits, including the distribution, density, and the species of bivalves coupled with environmental conditions, such as food concentrations, water tem - perature, turbidity, and feeding rates of the bivalves (Jaramillo et al., 1992; Dame, 1996). Rates of accumulation or dispersion of the biodeposits also depend on water movements close to the seafloor (Widdows et al., 1998; Callier et al., 2008). Generally, mariculture activities in well-flushed intertidal areas are likely to result in dispersal of the organic biodeposits, whereas subtidal mariculture in quiescent areas has the potential of pro- ducing a greater accumulation of biodeposits and consequently a greater localized impact on the benthos. The vast majority of the literature pertain- ing to organic enrichment has focused on mussel farming. Most studies have concluded that the effect of bivalve mollusc farming is relatively small and much less than that caused by finfish farming where organic matter is added to the system as food (e.g., Baudinet et al., 1990; Grant et al., 1995; Buschmann et al., 1996; Cranford et al., 2007; Zhang et al., 2009). Only a few studies have characterized organic loading from mol - lusc farms as high (e.g., Dahlbäck and Gunnarsson, 1981; Mattsson and Linden, 1983; Metzger et al., 2007), and these are cases in which cultured mussel densities are high and/or tidal circulation is low. Bivalve Mariculture Effects on Aquatic Plant Life Culture operations for bivalves interact with aquatic plants through displacement of seagrass by the cultured bivalves and associated cul - ture structures, through disturbance caused by shellfish planting and harvesting, through provision of unnatural hard substrates involved in culturing, through physical modification of flows regimes and sediments, and through water clarification and nutrient delivery to the bottom. Facili-

OCR for page 39
 ECOSYSTEM CONCEPTS FOR SUSTAINABLE BIVALVE MARICULTURE tation of benthic plants can occur when bivalve molluscs or associated culture structures provide attachment sites for macroalgae, the growth of which provides ecosystem services (habitat and nutrient sequestration; DeAlteris et al., 2004; Luckenbach and Birch, 2009). Eelgrass and other submerged aquatic vegetation (SAV) species can benefit from increased light penetration that expands the range of suitable bottom for occupa - tion by SAV and from fertilization of the plants with biodeposits, as dis- cussed earlier. In addition, bivalve mariculture activities can have nega - tive effects on SAV. In Willapa Bay, total production of eelgrass was lower in areas with oyster mariculture (Tallis et al., 2009). The relative growth rate of eelgrass was unaffected by the presence of oysters or geoducks in Willapa Bay and Totten Inlet, respectively. However, in these examples, shoot size varied and may have been responding to increased porewater ammonium or reduced intraspecific competition when molluscs were present (Dumbauld et al., 2009; Tallis et al., 2009). Augmentation of sedi - ment nutrient concentrations is known to stimulate eelgrass growth in some locations (see earlier section, Habitat Creation and Maintenance). Theoretically, high levels of biodeposits could lead to toxic sulfide con - centrations, but this has only been shown to occur when conditions were already eutrophic (Vinther et al., 2008). Finally, bivalve culture can stimulate growth of several species of macroalgae (DeCasabianca et al., 1997; Vinther et al., 2008), which can in turn negatively affect seagrasses (Hauxwell et al., 2001). Seagrasses are subject to multiple anthropogenic disturbances, which have been shown to be at least partly responsible for a general world - wide decline in their abundance (Orth et al., 2006; Waycott et al., 2009). Seagrasses are highly susceptible to rapid changes in their environment because of their requirement for high-incident light levels and their restriction to relatively shallow nearshore coastal waters (Dennison and Alberte, 1985; Orth et al., 2006). Eelgrass, Zostera marina, is one of the more common species studied in relation to bivalve mariculture because of its worldwide distribution in temperate seas. The upper distributional limit of Z. marina is determined primarily by desiccation (Boese et al., 2005) and the lower limit determined by light penetration, which is affected by turbidity in the estuary. Z. marina distribution overlaps directly with the area where most bivalve culture occurs, extending to almost –10 m where water clarity is high on both coasts of the United States (Phillips, 1984; Moore et al., 1996; Thom et al., 2003; Kemp et al., 2004). The enhancement of water clarity by suspension-feeding bivalves thus relieves an intrinsic limitation to the spread of eelgrass. In some areas, mollusc culture operations and aquatic vegetation compete for space. However, this relationship is not one-to-one. In Willapa Bay, Washington, an apparent threshold has been detected above which

OCR for page 39
 ECOLOGICAL EFFECTS OF BIVALVE MARICULTURE eelgrass declined by more than the area covered by ground-cultured oysters, while at lower levels of oyster cover, eelgrass was more abundant than predicted from simply the amount of space available (Dumbauld et al., 2009). Part of the threshold effect has been attributed to the sever- ing of eelgrass blades by the sharp tips of the oyster shells (Schreffler and Griffen, 2000), reducing its percent cover and possibly reproductive capacity. Shading from overwater structures is another form of nega- tive interaction. Work conducted by Everett et al. (1995) in Coos Bay, Oregon, found 100% loss of eelgrass directly under oyster racks, presum - ably resulting from shading and sediment erosion (10–15 cm at the base of the structure). Smaller reductions in eelgrass cover and density have been documented with other forms of off-bottom culture, such as long - lines and stakes, but losses tended to scale with density or spacing and were restricted primarily to the area beneath lines and stakes where shad- ing or sedimentation occurred (Everett et al., 1995; Rumrill and Poulton, 2004; Tallis et al., 2009). In one of the few landscape-scale studies that monitored changes for a long period of time, eelgrasses in Bahia de San Quentin, Mexico, did not decline as might be expected from shading by oyster culture racks (Ward et al., 2003). Benthic Invertebrates The degree to which benthic invertebrate populations and communi- ties are impacted by bivalve mariculture is typically related to the scale of operation, the species and culture techniques being used, and the physical and hydrodynamic characteristics of the culture site. As a result, scien - tific studies demonstrate a broad range of responses of benthic infauna to mariculture, ranging from no or moderate negative effects to positive effects. In addition to the relatively complex nature of the impacts of bivalve culture on benthic invertebrate populations and communities, many of the studies have focused only on the grow-out phase of cultiva - tion rather than assessing all aspects of the cultivation process (Kaiser et al., 1998). For instance, although collection of wild mussel seed for most commercial cultivation is done by the use of spat collectors, in a few locations (e.g., Maine in the United States, the Wadden Sea in Germany and the Netherlands, the Irish Sea) seed is harvested by bottom dredging in subtidal areas (see Box 4.2 on the Wadden Sea), resulting in greater impacts on benthic habitat. Lastly, disturbances to benthic habitats associ- ated with routine maintenance, harvesting, and handling of the molluscs are also not normally evaluated in published studies. Much of the research regarding the effects of bivalve mariculture on benthic invertebrate popu- lations has focused on the following two areas: (1) effects of increased organic loading to the sediments from bivalve biodeposits and (2) habitat

OCR for page 39
 ECOSYSTEM CONCEPTS FOR SUSTAINABLE BIVALVE MARICULTURE modification associated with the off- and on-bottom mariculture gear (e.g., racks, cages, bags) and the replacement, reduction, or enhancement of the local fauna by the cultivated bivalve species. The relative influence of each of these on benthic habitats varies depending upon the factors previously mentioned. Habitat Modification and Alteration of Benthic Communities Bivalve culture can modify benthic habitats in a number of positive and negative ways. For example, growing a species on the seafloor (e.g., oysters) increases habitat structure and enhances local biodiversity rela - tive to soft-sediment landscapes (e.g., Ferraro and Cole, 2007). Folke and Kautsky (1989) suggest that large-scale mussel culture can result in struc - tural changes in marine ecosystems by indirectly affecting the recruitment of other commercially important species. In addition, adult bivalves can remove larvae of some invertebrate species through their filtering activi - ties. Pechenik et al. (2004) demonstrate that adult Pacific and European flat oysters were capable of filtering the larvae of the slipper shell snail, Crepidula fornicata, although ample numbers of C. fornicata larvae survived through settlement and metamorphosis. Similarly, Troost et al. (2008) show that an escape response was elicited when Pacific oyster and blue mussel larvae were subjected to suction currents similar to those of adult Pacific oyster feeding currents. However, both studies acknowledge that experimental conditions were not necessarily reflective of natural condi - tions where many other factors come into play. Thus, the potential for high-density bivalve culture to impact recruitment of benthic species with planktonic larvae requires further study. Structures used in some types of mariculture operations, such as racks, bags, and ropes, can increase biodiversity by providing more habi- tat for fouling species (e.g., Powers et al., 2007) but also can alter the hydrodynamics of an area to some degree (see review by Kaiser et al. [1998]). These structures can redirect water flow and produce either scour- ing or accretion of sediment around the structures, depending on the local hydrodynamic regime (Hecht and Britz, 1992; Everett et al., 1995). At an intertidal Pacific oyster farm in Dungarvan Bay, Ireland, tides and strong currents around the farm site prevented organic enrichment beneath oyster trestles by dissipating biodeposits, but in access lanes that were subject to compaction and dispersal of the sediment by boat traffic, the species com- position and abundance of certain epibenthos and infauna differed sig- nificantly when compared with those parameters at a distant control site (de Grave et al., 1998). Castel et al. (1989) note that Pacific oyster culture on suspended racks in Arcachon Bay, France, increased sedimentation and enhanced the accumulation of debris (e.g., shells, macroalgae). An investi-

OCR for page 39
 ECOLOGICAL EFFECTS OF BIVALVE MARICULTURE gation of the effects of two types of oyster mariculture on sediment surface topography by Everett et al. (1995) found that stake culture resulted in a significant increase in sediment deposition, whereas rack culture resulted in more erosion compared with reference sites. Re-seeding large areas of the seabed with cultured or wild-collected bivalve seed stock and then harvesting market-sized individuals by dredging is common culture practice in many parts of the world (e.g., United States, France, the Netherlands, Ireland, Japan). Dredging has been widely reported to cause significant habitat and community changes (Dayton et al., 1995; Jennings and Kaiser, 1998; National Research Council, 2002). Dankers and Zuidema (1995) found that the most obvious impact of mussel culture on the Dutch Wadden Sea environment was dredging of seed mussels, which reduced the food supply for several bird species (see Chapter 4 for a more detailed discussion of harvest effects and Box 4.2 on the Wadden Sea as a case study). In some regions, the culture area is also mechanically worked to remove predators and prepare the substrate for re-seeding. For example, in Japan, re-seeded scallop beds are scraped with a “mop” to remove predators. Relatively large areas (e.g., square kilometers) can be affected, and the mopping activity can substantially alter the benthic epifaunal community structure. Fish and Mobile Crustaceans Studies of bivalve mariculture operations, mostly off-bottom, have shown higher abundances of some fish and crustaceans in areas with mari- culture structures in comparison to nearby areas with unstructured open mudflats, eelgrasses, or even nearby oyster reefs and rocky substrates, although eelgrass generally harbors more unique species (DeAlteris et al., 2004; Clynick et al., 2008; Erbland and Ozbay, 2008). A study of flatfish behavior showed that juvenile sole utilized oyster trestles for protection during the day and foraged over adjacent sand flats at night (Laffargue et al., 2006). A number of studies have documented the positive influ- ence of suspended mussel mariculture on food resources and therefore abundance of large macroinvertebrates and fish (Freire and Gonzalez- Gurriaran, 1995; D’Amours et al., 2008). A study in Narragansett Bay, Rhode Island, found that scup (Stenotomus chrysops) grew slightly faster on adjacent rocky habitats than in oyster mariculture bottom cages; tag - ging suggested that they had greater fidelity to the oyster cages (Tallman and Forrester, 2007). Powers et al. (2007) demonstrate that densities of fish and free- swimming invertebrates in North Carolina are as high over cultured clams in plastic bottom net bags (and associated fouling epibiota) as in eelgrass beds, with much lower fish and invertebrate densities over

OCR for page 39
 ECOSYSTEM CONCEPTS FOR SUSTAINABLE BIVALVE MARICULTURE PREDATOR, COMPETITOR, AND PEST CONTROL MANAGEMENT Bivalve molluscs are cultured in the marine or estuarine environ - ment, which exposes them to competitors associated with biofouling (i.e., undesirable sedentary organisms that settle on shells and maricul - ture structures, such as racks, stakes, lines, and bags) and to mobile competitors and predators, including other invertebrates, finfish, birds, and marine mammals. Growers have responded by developing control and management practices, including placing the bivalve molluscs on or under protective structures (i.e., racks, cages, bags, or under netting), physical removal of pests and predators, chemical control, and in some cases biological control. Fouling Organisms Biofouling is a common and potentially increasing problem for growers. Epifaunal mussels and oysters are especially vulnerable because their shells and culture structures provide hard substrate for settlement of fouling organisms, and such hard surfaces are often rare in soft-bottom estuarine and coastal systems. The fouling organisms, mostly filter feeders, reduce water flow and can compete with the cultured animals for food (Michael and Chew, 1976; Claereboudt et al., 1994; Taylor et al., 1997), although the magnitude of the effects, if any, will depend on location and species (Arakawa, 1990; Lesser et al., 1992; Ross et al., 2002; LeBlanc et al., 2003; Mallet et al., 2009). Several fouling organisms are nonnative species that came as hitchhikers with the introduction of the cultured bivalves (reviewed by McKindsey et al., 2007). Although current international protocols, typically enforced at the state level in the United States, have reduced unintentional species introductions associated with culture of nonnative bivalve molluscs, fouled hulls and ballast water releases associated with global trade and marine transport have resulted in more introductions of nonnative fouling organisms, including various species of algae and tunicates (e.g., the algae Sargassum muticum, Undaria pinnatifida, and Codium fragile and the tunicates Didemnum spp. and Ciona intestinalis). Shellfish culture on the seafloor (e.g., oysters, mussels) or suspended off the bottom (e.g., oysters, mussels, scallops) adds substrate area for the colonization of a variety of native and nonnative fouling species or epibionts (e.g., barnacles, tunicates, sponges, bryozoans, macroalgae). In many benthic habitats, the hard substrate surface area provided by bivalve shells on the seafloor may be equal to or greater than the amount of natural inert hard substrate (Railkin, 2004), and it is well recognized that adding more structure to benthic habitats results in an increase in the overall biodiversity to those habitats (e.g., Dumbauld et al., 2001;

OCR for page 39
 ECOLOGICAL EFFECTS OF BIVALVE MARICULTURE Peterson et al., 2003). In addition, off-bottom mariculture activities typi - cally employ a variety of gear types that have the potential for greatly enhancing the abundance and diversity of species through greater provi - sion of additional substrata for the colonization of fouling species. These include ropes and netting used in mussel culture; racks, trays, and bags used in oyster culture; and nets used in scallop culture. While the addition of structure may increase overall local biodiversity in a system, as compared to unstructured habitats, there is evidence that the biofouling community structure can differ greatly from that on natu - ral hard substrates (e.g., Karlson, 1978; Anderson and Underwood, 1994; Glasby et al., 2007). In addition, there is some evidence that artificial sub - strates may disproportionally favor the colonization of nonnative fouling species by increasing local sources of propagules of these species (Tyrrell and Byers, 2007). In some cases, the proliferation of nonnative biofoulers has resulted in reductions in local biodiversity (e.g., Blum et al., 2007), which have the potential to facilitate further invasions (Stachowicz et al., 2002) and to lead to potential alterations in population and community structure in coastal food webs (Byrnes et al., 2007). While some studies have shown that cultured mollusc growth is unaffected (e.g., Lesser et al., 1992; Lopez et al., 2000) or even enhanced (Ross et al., 2002) by fouling, most studies have found that fouling results in reduced mollusc growth and survival and in increased costs to the industry (Watson et al., 2009). In one especially dire circumstance, the inva- sive tunicate Ciona intestinalis threatens 77% of Canadian mussel farms; at Prince Edward Island, some mariculturists may lose their livelihoods (Edwards and Leung, 2009). Because biofouling by both native and non- native species increases production costs for the industry, several practices have been developed and implemented to reduce or control it. The general trend is to use techniques that reduce labor costs, ensure product qual- ity, and minimize potential environmental impacts. Techniques include mechanical, chemical, and biological control methods with mechanical and chemical techniques being the most common methods used to remove foul- ing species from cultured bivalve molluscs and mariculture gear (Watson et al., 2009) (Box 3.1). However, specific applications and their effectiveness typically depend upon the species being cultured, the nature and degree of the biofouling community, and the local environmental conditions. For instance, one-minute exposures to vinegar are 100% effective in mitigating C. intestinalis biofouling (Carver et al., 2003). Biofouling Mitigation Methods Growers use various methods to control biofouling, most often based on physical removal or inhibition by turning over nets and bags (Mallet et

OCR for page 39
 ECOSYSTEM CONCEPTS FOR SUSTAINABLE BIVALVE MARICULTURE Box 3.1 Removal of Fouling organisms Proliferation of fouling organisms (primarily tunicates) on mariculture gear and on oysters is a major economic issue for shellfish farmers. Many methods have been used in an attempt to control this problem, including chemical treatments with saturated brine, sodium hydroxide, hydrated lime, acetic and citric acids, formalin, detergents, and chlorine, as well as physical treatments using air drying, ultraviolet light, steam, hot water, electricity, smothering, pressure washing, and puncturing (Carver et al., 2003; Coutts and Forrest, 2007; LeBlanc et al., 2007; Locke et al., 2009). Removal of fouling organisms on mariculture gear is done almost univer- sally over the water. The committee is not aware of any published studies on the impacts of the large-scale removal of fouling organisms and of disposal at sea or in the estuary on the marine pelagic or benthic environments near shellfish farms. The level of ecosystem impact would likely depend on the intensity of fouling, the season and spatial scale of removal efforts, and the health and character of the receiving aquatic ecosystem. Experienced bivalve farmers employing divers have reported that the added organic materials are either washed away quickly by tidal flow, are consumed by benthic scavengers, or are quickly dissipated by currents (Robert Rheault, personal communication). Because most of the fouling organisms being removed from mariculture gear are tunicates of a high-saltwater content, the potential for land-based removal for composting is considered small. al., 2009) but sometimes by using antifouling agents and other chemical treatments (e.g., acetic acid brine) that are typically applied as dips and followed by brief aerial exposure of the affected organisms or structures (Shearer and MacKenzie, 1961; Huguenin and Huguenin, 1982; Carver et al., 2003; Forrest et al., 2007; LeBlanc et al., 2007; Locke et al., 2009). Some growers have experimented with biological control agents, such as crabs, littorinid snails, and even fish, but this method does not appear to have been widely adopted (Hidu et al., 1981; Enright et al., 1983; 1993; Cigarria et al., 1998). Physical removal of fouling organisms has the potential effect of spreading marine invasive species and increasing the bottom deposi - tion of organic material when conducted over water. With proper disposal techniques, both physical and chemical treatments conducted offsite or in separate holding areas would have little additional environmental effects, but this is economically feasible only on the small scale. Impacts of direct application of chemical control agents in the field at larger scales have not been examined (see Shumway et al. [1988] for details on the use of calcium oxide).

OCR for page 39
 ECOLOGICAL EFFECTS OF BIVALVE MARICULTURE Predators on Bivalve Molluscs Predation on commercially raised bivalve molluscs, particularly small juveniles planted directly in marine or estuarine growing areas, continues to constrain mariculture in many areas. Predators range in size from dimin- utive flatworms to birds and mammals (Woelke, 1956; Jory et al., 1984). Some predators, such as the Japanese oyster drill (Ocenebrellis inornatus), were introduced along with the nonnative bivalves and have remained problematic for both cultured and non-cultured species (Chapman and Banner, 1949; Buhle and Ruesink, 2009). Birds are recognized predators and are often more abundant in areas with mussel culture than nearby controls (Caldow et al., 2004; Roycroft et al., 2004), yet the direct effect of bivalve mariculture operations on their behavior varies by species. Predator Control Measures Where depredation of the cultured species is a problem, farmers use a wide range of both passive (Dionne et al., 2006) and active deterrents (Ross et al., 2001; Thompson and Gillis, 2001) to reduce losses (Table 3.2). These practices can in turn influence the distribution patterns and behavior of the species preying upon molluscs in their farms or upon other species coexist- ing in the area. If the use of anti-predator netting leads to entanglement or if shooting is used to reduce predation, these interactions may also result in a reduction in the abundance of affected predator populations. These interactions can raise both ethical and legal issues, particularly where migrating wildfowl or shorebirds are protected under international trea- ties. In the United States, turtles and some marine mammals are protected TABLE 3.2 Techniques Attempted to Mitigate Sea Duck Predation on Bivalves Technique Challenge Effectiveness Cost Exclusion nets Fouling and Effective Relatively high predator mortality Loud sounds Habituation and Moderate Expensive battery life Chemical deterrents Effect duration Effective Unknown Boat patrol Habituation Effective Expensive, at large spatial scale Biological methods Habituation Minimal Unknown (e.g., falcons, eagles)

OCR for page 39
 ECOSYSTEM CONCEPTS FOR SUSTAINABLE BIVALVE MARICULTURE by the Endangered Species Act, and the Marine Mammal Protection Act prohibits the intentional killing or harassment of all marine mammals. Shellfish growers have responded to predation threats primarily by providing physical protection measures like raising the bivalves off the bottom to protect them from crawling benthic predators or growing the bivalves in protective bags, under netting, surrounded by fences, in tubes, or by adding gravel and shell fragments to the substrate (Castagna and Kraeuter, 1977; Kraeuter and Castagna, 1985; Beattie, 1992; Thompson, 1995). Protective structures modify water flow; affect sediment deposition; provide attachment sites for fouling organisms; and some structures, such as racks, create shaded spots that inhibit the growth of seagrasses (Everett et al., 1995; Rumrill and Poulton, 2004; Tallis et al., 2009). Clam mariculture conducted in bags has been shown to affect sediment but not water column characteristics. Macroalgae and bryozoans attached to bags were shown to attract mobile invertebrates and fish (Powers et al., 2007). Predator net- ting can result in slightly enhanced sediment organic content but has little consistent effect on sediment grain size or presence of indigenous bivalves (Munroe and McKinley, 2007; Whiteley and Bendell-Young, 2007). Adding gravel and shell to the substrate in Puget Sound, Washington, appears to have site-specific effects on the benthic community, with a general trend of enhanced gammarid amphipod and nemertean abundance and reduced abundance of glycerid, sabellid, and nereid polychaetes (Simenstad and Fresh, 1995; Thompson, 1995). Though mussels are sometimes grown under protective covering, they are still highly vulnerable, and thus both visual and acoustic deterrents to disturb birds that prey on mussels have been investigated (Ross et al., 2001) (see Table 3.2). These practices would seem to have little direct envi- ronmental impact but could change local predator–prey relationships. In some cases, predators may be trapped, removed by hand, or mechanically removed. For example, starfish have been removed by towing mops, cotton bundles tied to a metal frame, across the bottom (MacKenzie, 1970). Chemical means of controlling predators on bivalve molluscs were extensively investigated in the 1960s (Loosanoff et al., 1960) and applied on small scales for oyster drills and sea stars (Glude, 1957; Huguenin, 1977; Shumway et al., 1988), but chemicals have been rarely used on large estuary-wide scales. One exception has been the use of the pesticide carbaryl to control burrowing shrimp on oyster beds in Washington State (Feldman et al., 2000). The shrimp are not direct predators but strong bioturbators, which indirectly cause mortality by burying and smothering the oysters under sediment. Because this practice of poisoning has raised persistent con - cerns about effects on the resident ecological community, it has been studied reasonably well. Long-term changes in the structure of the com -

OCR for page 39
 ECOLOGICAL EFFECTS OF BIVALVE MARICULTURE munity are driven by the removal of one ecosystem engineer (the shrimp) and replacement with another (oysters and even eelgrass; Dumbauld et al., 2001; Dumbauld and Wyllie-Echeverria, 2003). Bioturbation by shrimp oxygenates sediments, thereby accelerating degradation of organic matter and nutrient cycling (Dewitt et al., 2004; D’Andrea and DeWitt, 2009). Abundances of the commensal bivalve, Cryptomya californica, crashed after experimental ghost shrimp removal in a southern California lagoon, whereas recruitment of another bivalve (Sanguinolaria nuttalli) was dra- matically enhanced (Peterson, 1977; 1984). The scale of ghost shrimp removal programs is small relative to the size of most estuaries where carbaryl is used. For example, <1% of the intertidal in Willapa Bay is treated annually, and the shrimp are abundant in untreated areas (at least 20% of the intertidal area in Willapa Bay; Dumbauld et al., 2008). uNCERTAINTIES, uNkNOWNS, AND RECOMMENDED RESEARCH Ecological uncertainties associated with managing the environmental consequences of mariculture will depend on the species cultured, the characteristics of the resident ecosystem, and the scale of the culture operation. This section summarizes some of the areas in which additional research would help to address key questions about the ecological effects of molluscan mariculture to improve best management practices. Nutrient Cycling and Carrying Capacity The impact of a small mariculture operation (possibly defined by stocking density) on the ecological community in a large, well-flushed system will probably be undetectable relative to the natural “noise” of the system. With an increase in stocking density relative to the supply of food or other resources, the ecological effects could become measurable in at least three aspects. First, there could be direct competition for resources, especially food and space, between the farmed species and the other resi- dents of the system. Second, the biodeposition of organic materials could induce local oxygen depletion and mortality of natural bottom inverte - brates where shellfish loading is high and physical flushing low. Third, the cultured suspension-feeding bivalves could conceivably function as predators on the eggs and dispersing larvae of resident species. Knowl - edge of these effects is critical for evaluating system carrying capacity and addressing concerns about potential impacts on biodiversity. Finding: Research that takes a broader landscape-scale and ecosystem- based approach would provide a better understanding of how the

OCR for page 39
 ECOSYSTEM CONCEPTS FOR SUSTAINABLE BIVALVE MARICULTURE scale and intensity of bivalve mariculture influence the natural eco - system structure and processes. To achieve this goal, methods for accurate estimation of ecosystem carrying capacity will be vital. In addition, further study of the impacts of high-density (intensive) mariculture on local biodiversity would help decision makers and managers anticipate changes in the ecosystem that could influence social attitudes and public acceptance. Recommendation: Efforts should be directed at studying effects of bivalve mariculture at appropriate landscape and ecosystem scales that would facilitate managing mariculture at these scales instead of current management scales, which often focus on the scale of the individual lease or even individual potentially impacted species. Finding: Long-term sustainability of bivalve stocks depends upon the maintenance of a positive shell budget for carbonate, as well as provision of habitat that supports recruitment, growth, and survival. Mariculture of bivalves can contribute favorably to shell production and preservation in coastal ecosystems if the operators return the shell resource to the environment after harvest. Recommendation: Programs should be developed to either encour- age or require the return of shells (after shucking) to the estuarine, lagoonal, or coastal bottom to conserve and enhance shell resources, of particular importance as chemical buffers as the ocean acidifies further. Seagrass vegetation Not much is known about the factors that cause seagrasses to alter their reproductive strategy (seed or spore production versus asexual expansion via rhizomes and blade growth); how plants respond to dis- turbance from bivalve mariculture operations relative to natural distur- bances; and how response to disturbance varies by season (plant density varies naturally across seasons), location, environment, and species. Finding: These effects need to be studied at larger spatial scales, such as an estuarine landscape, and over longer and more relevant tempo- ral scales. This would facilitate spatially explicit management and in some areas might make it practical to manage bivalve mariculture to promote the growth and expansion of adjacent seagrass vegetation. Recommendation: Future research efforts should assess how modifi- cation of habitat by bivalve mariculture affects aquatic vegetation and mobile fish and invertebrates at larger spatial and longer temporal scales, especially life stages of the guild(s) of fish and crustaceans

OCR for page 39
 ECOLOGICAL EFFECTS OF BIVALVE MARICULTURE known to associate with structure and hard substrates. Additionally, mariculture structures, such as racks, lines, bags, and the cultured shellfish should be studied to determine whether they act only as attractants or also enhance productivity of species known to aggre - gate around structures. Culture of Nonnative Molluscs The use of nonnative species in bivalve mariculture is likely to persist in areas, such as the Pacific Northwest, where there is a long history of culturing nonnatives, such as the Pacific oyster and the Manila clam. In some cases, these nonnatives have become naturalized—reproductive populations have become established in ecosystems well removed from the immediate vicinity of the shellfish farms. Even in areas where the cultured species has not established a self-replicating population, there is still the possibility that the cultured nonnative bivalve may become natu - ralized. The presence of nonnative molluscs may suppress the recovery of native species. For example, Trimble et al. (2009) show conclusively that competent larvae of the native oyster O. lurida are lured into settling in unfavorable environments by the presence of shells of the nonnative C. gigas. This contributes to the lack of recovery of O. lurida populations even though remnant populations in some estuaries and lagoons repro - duce annually. There are also risks associated with nonnative molluscs as vectors of invasion for hitchhiking species and disease agents that may affect economically important resident species, as well as having potential impacts on population-, community-, and ecosystem-level structure and function. The implementation of current nonnative bivalve transfer prac - tices, such as the ICES Code of Practice, has greatly reduced the potential introduction of nonnative hitchhiking species. However, there are still concerns about the importation of pathogens and other organisms that may not be detected by normal screening procedures. Finding: There is a need for the harmonization across states of impor- tation regulations and health requirements prior to movement of animals, including transport involved in the sale of live molluscs. Education of those involved in conducting and regulating animal transfers across biogeographic regions in appropriate methods and concerns would help limit further the inadvertent transmission of disease agents. Finding: Continued research efforts could develop appropriate cul- turing techniques for native bivalve species, as well as enhance ways of restoring and then sustainably managing depleted native stocks.

OCR for page 39
0 ECOSYSTEM CONCEPTS FOR SUSTAINABLE BIVALVE MARICULTURE It is important to develop a better understanding of the potential of nonnative bivalve molluscs used in mariculture to become naturalized under changing environmental, climatic, and other conditions. Addi- tionally, there is a general lack of information on community- and ecosystem-level responses to mollusc introductions and how those responses compare to native species. Recommendation: To prevent unintentional and probably irreversible establishment of breeding populations of introduced species, maricul- ture operators should use sterile triploids as much as possible when they grow nonnative bivalves in areas where the cultured species either has not been introduced or has not established a reproductive population. More attention should be directed toward the eradica- tion of undesirable nonnative species, and a greater emphasis should be placed on studies of ecosystem-level effects of nonnative bivalve introductions. Bivalve Diseases and Genetics Infectious diseases can be key drivers shaping local community struc- ture and biodiversity. Despite this, parasites and pathogens are commonly overlooked or underappreciated elements of the ecology and biodiversity of many systems. Although the general roles of infectious diseases in pop - ulation regulation are recognized, the roles of specific disease agents are often disregarded or have not been well studied (see review by Thomas et al. [2008]). Characteristics of the host, pathogen, and environment shape the ecology of infectious diseases and may cause dramatic fluctuations in populations. Although parasites and disease agents are natural compo - nents of ecosystems, their expression may be magnified or altered in an environment where animals are in high density. Such potential for chang- ing impacts of parasites and diseases can be easily monitored in a bivalve mariculture setting. High densities favor parasite transmission via higher levels of parasite release and/or greater contact between infected and uninfected organisms (e.g., Stiven, 1964; Anderson and May, 1981). Many examples exist in which the introduction or transfer of marine molluscs has resulted in the inadvertent introduction of a pathogen (e.g., Elston et al., 1986; Burreson et al., 2000; Naylor et al., 2001; Friedman and Finley, 2003; Wetchateng, 2008). Should a parasite be introduced into a new environment with new potential hosts, one cannot predict the outcome of such encounters (Lafferty et al., 2004). In addition, with global climate changes, current host–parasite relationships that appear to be in equilib - rium may shift in or out of favor for the parasite and result in epidemics or improved health in the host population(s).

OCR for page 39
 ECOLOGICAL EFFECTS OF BIVALVE MARICULTURE Finding: Collection of baseline data on existing diseases and parasites is often lacking and is needed to determine the introduction or change in distribution, incidence, or infestation intensity of a disease or para - site. In addition, continued development of diagnostic methods will enhance our ability to discover new parasites and diseases and to diagnose infected individuals prior to potential movement to a new location. Finding: Long-term research on developing and improving domes- ticated mollusc stocks is needed to make mollusc farming more efficient. Recommendation: Such research should be coupled with research on reducing or eliminating interactions between wild and farmed popu - lations (e.g., by inducing triploidy in hatchery-propagated stocks). Hatchery-based restoration efforts should proceed with caution, using best practices for minimizing genetic differences between planted and wild seed. Interactions with Wildlife Populations Information on the potential effects of mariculture outlined above is largely based upon a general understanding of wildlife ecology and the relationships of these species to the physical and biological envi- ronment rather than directed studies built around mariculture opera- tions. In addition, limited understanding of the foraging distribution of birds, marine mammals, and marine turtles from spatially localized breeding colonies makes it extremely challenging to assess population- level impacts of disturbance, entanglement, or habitat loss resulting from bivalve mariculture. Finding: Assessments of the impacts of disturbance from bivalve mariculture on birds, marine mammals, and marine turtles are con- strained by insufficient baseline data on habitat use by these species and further, by a lack of data both on spatio-temporal variation in disturbance events and on the longer-term consequences of these disturbances on populations of these species. Recommendation: Managers should recognize that previous studies have limited power to detect adverse effects of disturbance and that a precautionary approach should be taken in order to minimize poten- tial disturbance. Future decision making would benefit from targeted research that incorporates spatially explicit studies of the activities of mariculturists; the individual behavioral responses of birds, marine

OCR for page 39
 ECOSYSTEM CONCEPTS FOR SUSTAINABLE BIVALVE MARICULTURE mammals, and marine turtles using these coastal habitats; and the population consequences of any observed behavioral changes. Finding: Effective integration of bivalve mariculture and wildlife conservation interests into marine spatial planning requires a better broad-scale understanding of the distribution of the birds, marine mammals, and marine turtles. Finer-scale studies are also required to characterize the behavior and ecology of individual birds, marine mammals, and marine and estuarine turtles around mariculture sites and in relation to the activities of mariculture workers. Recommendation: Opportunities should be identified to assess mariculture impacts on these species through controlled studies that are conducted before and after the development of shellfish farms. Focused studies should be done to identify management approaches that best minimize potential impacts upon birds, marine mammals, and turtles. Finding: While integrated pest management is the broader goal, it is rarely being implemented, and the ecology and effects of pests, predators, and control practices are rarely evaluated, especially at spatial scales larger than an individual farm or portion thereof (e.g., for burrowing shrimp in west coast oyster mariculture; Dumbauld et al., 2006). Finding: Despite early progress and much success with protective devices, substantial mortality of cultured molluscs at early life-history stages is still observed, and research is still needed on tools and best management practices for controlling pests and predators. Benthic community changes associated with removing predators are also understudied and largely unknown, and the effects of excluding predators are little studied at the estuarine-landscape scale. Recommendation: Opportunities to assess the effects of pest and predator control practices on the wider benthic community and imple- ment integrated pest management at this larger spatial scale should be pursued, especially where shellfish farms might be expected to have an effect at this scale.