for those cancers are less consistent but should not be dismissed. The draft IRIS assessment considered those end points but did not weigh them heavily in the classification of tetrachloroethylene as a human carcinogen. That is appropriate.

GENERAL COMMENTS ON THE ENVIRONMENTAL PROTECTION AGENCY’S PRESENTATION OF EPIDEMIOLOGIC EVIDENCE ON CANCER

One of the biggest difficulties in assessing the cogency of the EPA’s assessment related to cancer is how the data are organized in the tables and some parts of the text. It would be much easier to evaluate the overall picture of results regarding tetrachloroethylene and a particular cancer if the tables were organized by cancer type as opposed to the current format, which organizes them by study design. The current format requires the reader to jump between sections for cohort mortality, incidence, and case-control studies. Studies are sometimes further categorized as to the type of worker included (for example, drycleaner vs degreaser); this makes it extremely difficulty to evaluate the overall consistency or lack of consistency in results related to specific cancers.

Errors in reporting results also occur occasionally. For example, the draft reports (on page 4-150, lines 1-3), in relation to Hodgkin disease, “a statistically significantly elevated risk for male [sic] with a job title of dry cleaner or laundry worker (Costantini et al. 2001).” The result from Costantini et al. for that group in relation to Hodgkin disease was an OR of 2.5 (95% CI, 0.3-24.6), which is not significant and was based on a single case.

The overall impression is that data are presented to support a positive association between tetrachloroethylene and cancer and that studies that found no such association are criticized or minimized. EPA should provide a clearer discussion of criteria used to identify studies of merit and a more balanced critique to strengthen the draft IRIS assessment.

RESEARCH RECOMMENDATIONS

Population-based studies, preferably in well-defined occupational cohorts, that can measure both cancer incidence and mortality and have sophisticated exposure reconstruction components that are specific to tetrachloroethylene would add significantly to the literature. The studies must also be adequately controlled for the effects of smoking and alcohol consumption to address the lingering questions of the association between tetrachloroethylene and esophageal cancer. In the absence of data to control for these confounders, sensitivity analyses should be conducted to estimate the exposure effect after adjustment under reasonable sets of assumptions regarding smoking prevalence and the strength of smoking effects. Further research that classifies exposure only by occupational title will not add to the literature.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement