cancer, the anatomic location and extent of disease at diagnosis, kinds of treatment and outcomes. Lipscomb noted that disease registries are a core resource for a learning healthcare system. Cancer registries can be used to determine the natural history of disease, determine clinical effectiveness or cost-effectiveness, measure and monitor safety and harm, and evaluate the quality of care. Dr. Robert German of the Centers for Disease Control and Prevention (CDC) noted that state cancer registries, in specific, collect population-based data on cancer incidence, morphology, primary site, stage at diagnosis, planned first course of treatment, and outcome of the treatment and clinical management. These registries collect their information from a number of sources, including hospitals, clinics, physician offices, pathology laboratories, nursing homes, and coroner’s offices. Most cancer data comes from hospitals where highly trained cancer registrars extract data from the patients’ medical record and enter it into the registry’s computing software for transfer to central cancer registries. Ms. Sandy Thames of CDC outlined some of the challenges and limitations of using registry data, due mainly to the time consuming, labor-intensive nature of the process of collecting cancer data, the risk of errors in extraction or transcription, the limited nature of the data set due to the expense of manually collecting and processing large amounts of information, the delay in availability of data, and the lack of completeness in reporting and follow-up of cases. In particular, no standards have been implemented for data collection and reporting from non-hospital sources which thus do not consistently report cases.

Notwithstanding the limitations, there are a number of state and national programs that actively collect and report cancer data, producing extensive surveillance of cancer incidence and mortality in this country, with the cancer data collected differing according to the mandates of the supporting agency. Beginning in the 1970s, the National Cancer Institute’s (NCI’s) Surveillance, Epidemiology and End Results (SEER) program has collected a non-random population-based sample of cancer incidence and survival data from a system of high-quality state and local cancer registries (NCI, 2010b). This database currently collects data from about 26 percent of the U.S. population. Since the 1990s, the CDC’s National Program of Cancer Registries (NPCR) has supported statewide, population-based cancer registries from 45 states, the District of Columbia, Puerto Rico, and the U.S. Pacific Island jurisdictions. These NPCR now covers about 96 percent of the population in the United States and provides CDC the means to receive, aggregate and disseminate cancer data from state and territorial cancer registries for public health surveillance. The SEER program and the

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement