Cover Image

HARDBACK
$75.25



View/Hide Left Panel

(and simultaneously but independently, D. O. North at RCA Laboratories) developed the matched-filter principle critical to data communications and an enduring concept in the field today. In 1943 Dr. Middleton began the analysis of signals and noise passing through nonlinear devices, such as the “chaff,” or aluminum strips, used to jam radar signals in order to protect American ships and aircraft from detection by the enemy.

As an assistant professor of applied physics at Harvard University (1949–1954), he introduced new courses on statistical communication theory and processing signals in noise. He also served as adjunct professor at Rensselaer Polytechnic Institute and the universities of Columbia, Johns Hopkins, Texas, Rice, and Rhode Island, where he supervised a number of doctoral students and made major contributions with them.

From 1954 to 2008 Dr. Middleton was a consultant to universities, industry, and the federal government. During the Cold War era of the 1950s through the 1980s, Dr. Middleton’s theoretical work for the government was applied to antisubmarine warfare systems, in particular to passive and active sonar systems to track Soviet submarines. During the détente of the 1970s, when U.S. and Russian scientists began pursuing joint projects, he served as scientific editor for several Russian texts in his field and made presentations in the former Soviet Union, where he was officially recognized and highly regarded in his field.

Published in 1960 and widely translated into many languages, Dr. Middleton’s seminal work, An Introduction to Statistical Communication Theory (McGraw-Hill; reprint editions with new author’s prefaces issued in 1987 by Peninsula Publishing and 1996 by IEEE Press, now distributed by Wiley-IEEE Press), played a major role in integrating statistical methods into the education of engineers in communications, radiolocation, and related fields. Leon Cohen, professor of physics at Hunter College in New York, has used the book since graduate school 45 years ago. He writes: “Dr. Middleton’s book is one of those texts that is so extraordinary for its clarity and depth that one marvels at it and the author. It is perhaps the greatest book ever written on noise, probability theory, and stochastic



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement