ous materials, have a washable surface, and be free of imperfect junctions. Exposed plumbing, ductwork, and light fixtures are undesirable unless the surfaces can be readily cleaned.

Heating, Ventilation, and Air Conditioning (HVAC)

A properly designed and functioning HVAC system is essential to provide environmental and space pressurization control. Temperature and humidity control minimizes variations due either to changing climatic conditions or to differences in the number and kind of animals and equipment in an animal holding space (e.g., a room or cubicle). Pressurization assists in controlling airborne contamination and odors by providing directional airflow between spaces. Areas for quarantine, housing and use of animals exposed to hazardous materials, and housing of nonhuman primates should be kept under relative negative pressure, whereas areas for surgery or clean equipment storage should be kept under relative positive pressure with clean air.

HVAC systems should be designed for reliability (including redundancy where applicable), ease of maintenance, and energy conservation; able to meet requirements for animals as discussed in Chapter 3; and flexible and adaptable to the changing types and numbers of animals and equipment maintained during the life of the facility (ASHRAE 2007a). They should be capable of adjustments in and ideally maintain dry-bulb temperatures of ±1°C (±2°F). Relative humidity should generally be maintained within a range of 30-70% throughout the year. Although maintenance of humidification within a limited range over extended periods is extremely difficult, daily fluctuations (recognizing the effects of routine husbandry especially when caring for large animal species) in relative humidity should be minimized; if excursions outside the desired range are infrequent, minimal, and of short duration, they are unlikely to negatively affect animal well-being. Ideally relative humidity should be maintained within ±10% of set point; however, this may not be achievable under some circumstances.

Constant-volume systems have been most commonly used in animal facilities, but variable-volume (VAV) systems may offer design and operational advantages, such as allowing ventilation rates to be set in accordance with heat load and other variables. These systems offer considerable advantages with respect to flexibility and energy conservation (see Chapter 3).

Previously specified temperature and humidity ranges can be modified to meet special animal needs in circumstances in which all or most of the animal facility is designed exclusively for acclimated species with similar requirements (e.g., when animals are held in a sheltered or outdoor facility). In addition, modifications may need to take into account the microenvironment in some primary enclosures, such as rodent isolator cages, where humidity and temperature may exceed room levels.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement