The design of a surgical facility should accommodate the species to be operated on and the complexity of the procedures to be performed (Hessler 1991; see also Appendix A, Design and Construction of Animal Facilities). The facility, including that used for rodents, by necessity becomes larger and more complex as the number and size of animals or the complexity of procedures increase. For instance, a larger facility may be required to accommodate procedures on agricultural species, large surgical teams, imaging devices, robotic surgical systems, and/or laparoscopic equipment towers. Surgical facilities for agricultural species may additionally require floor drains, special restraint devices, and hydraulic operating tables.

For most survival surgery performed on rodents and other small species such as aquatics and birds, an animal procedure laboratory is recommended; the space should be dedicated to surgery and related activities when used for this purpose, and managed to minimize contamination from other activities conducted in the room at other times. The association of surgical facilities with diagnostic laboratories, imaging facilities, animal housing, staff offices, and so on should be considered in the overall context of the complexity of the surgical program. Centralized surgical facilities are cost-effective in equipment, conservation of space and personnel resources, and reduced transit of animals. They also enable enhanced personnel safety and professional oversight of both facilities and procedures.

For most surgical programs, functional components of aseptic surgery include surgical support, animal preparation, surgeon’s scrub, operating room, and postoperative recovery. The areas that support those functions should be designed to minimize traffic flow and separate the related non-surgical activities from the surgical procedure in the operating room. The separation is best achieved by physical barriers (AORN 1993) but may also be achieved by distance between areas or by the timing of appropriate cleaning and disinfection between activities.

Surgical facilities should be sufficiently separate from other areas to minimize unnecessary traffic and decrease the potential for contamination (Humphreys 1993). The number of personnel and their level of activity have been shown to be directly related to the level of bacterial contamination and the incidence of postoperative wound infection (Fitzgerald 1979). Traffic in the operating room can be reduced by the installation of an observation window, a communication system (such as an intercom system), and judicious location of doors.

Control of contamination and ease of cleaning should be key considerations in the design of a surgical facility. The interior surfaces should be

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement