3
Environment, Housing, and Management

This chapter provides guidelines for the environment, housing, and management of laboratory animals used or produced for research, testing, and teaching. These guidelines are applicable across species and are relatively general; additional information should be sought about how to apply them to meet the specific needs of any species, strain, or use (see Appendix A for references). The chapter is divided into recommendations for terrestrial (page 42) and aquatic animals (page 77), as there are fundamental differences in their environmental requirements as well as animal husbandry, housing, and care needs. Although formulated specifically for vertebrate species, the general principles of humane animal care as set out in the Guide may also apply to invertebrate species.

The design of animal facilities combined with appropriate animal housing and management are essential contributors to animal well-being, the quality of animal research and production, teaching or testing programs involving animals, and the health and safety of personnel. An appropriate Program (see Chapter 2) provides environments, housing, and management that are well suited for the species or strains of animals maintained and takes into account their physical, physiologic, and behavioral needs, allowing them to grow, mature, and reproduce normally while providing for their health and well-being.

Fish, amphibians, and reptiles are poikilothermic animals: their core temperature varies with environmental conditions and they have limited ability (compared with birds and mammals) to metabolically maintain core temperature. The majority of poikilothermic laboratory animals are aquatic species—for example, fish and most amphibians—although some, such as



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 41
3 Environment, Housing, and Management T his chapter provides guidelines for the environment, housing, and management of laboratory animals used or produced for research, testing, and teaching. These guidelines are applicable across species and are relatively general; additional information should be sought about how to apply them to meet the specific needs of any species, strain, or use (see Appendix A for references). The chapter is divided into recommenda- tions for terrestrial (page 42) and aquatic animals (page 77), as there are fundamental differences in their environmental requirements as well as ani- mal husbandry, housing, and care needs. Although formulated specifically for vertebrate species, the general principles of humane animal care as set out in the Guide may also apply to invertebrate species. The design of animal facilities combined with appropriate animal hous- ing and management are essential contributors to animal well-being, the quality of animal research and production, teaching or testing programs involving animals, and the health and safety of personnel. An appropriate Program (see Chapter 2) provides environments, housing, and manage- ment that are well suited for the species or strains of animals maintained and takes into account their physical, physiologic, and behavioral needs, allowing them to grow, mature, and reproduce normally while providing for their health and well-being. Fish, amphibians, and reptiles are poikilothermic animals: their core temperature varies with environmental conditions and they have limited ability (compared with birds and mammals) to metabolically maintain core temperature. The majority of poikilothermic laboratory animals are aquatic species—for example, fish and most amphibians—although some, such as 41

OCR for page 41
42 GUIdE FOR ThE CARE ANd USE OF LAbORATORy ANIMALS reptiles and certain amphibian species, are terrestrial. Personnel working with aquatic animals should be familiar with management implications, e.g., the importance of providing appropriate temperature ranges for basic physiologic function. TERRESTRIAL ANIMALS Terrestrial Environment Microenironment and Macroenironment The microenironment of a terrestrial animal is the physical environ- ment immediately surrounding it; that is, the primary enclosure such as the cage, pen, or stall. It contains all the resources with which the animals come directly in contact and also Microenvironment: The immedi- provides the limits of the animals’ ate physical environment sur- immediate environment. The micro- rounding the animal (i.e., the environment is characterized by many environment in the primary en- closure such as the cage, pen, factors, including illumination, noise, or stall). vibration, temperature, humidity, and gaseous and particulate composition of the air. The physical environment of the secondary enclosure, such as a room, a barn, or an outdoor habitat, constitutes the macroenironment. Although the microenvironment and the macroenvironment are gener- ally related, the microenvironment can be appreciably different and affected by several factors, including the design of the primary enclosure and mac- roenvironmental conditions. Evaluation of the microenviron- ment of small enclosures can be dif- ficult. Available data indicate that Macroenvironment: The physi- temperature, humidity, and concen- cal environment of the second- trations of gases and particulate mat- ary enclosure (e.g., a room, a barn, or an outdoor habitat). ter are often higher in the animal microenvironment than in the macro- environment (Besch 1980; Hasenau et al. 1993; Perkins and Lipman 1995; E. Smith et al. 2004), while light levels are usually lower. Microenvironmental conditions can directly affect physiologic processes and behavior and may alter disease susceptibility (Baer et al. 1997; Broderson et al. 1976; Memarzadeh et al. 2004; Schoeb et al. 1982; Vesell et al. 1976).

OCR for page 41
43 ENVIRONMENT, hOUSING, ANd MANAGEMENT Temperature and humidity Maintenance of body temperature within normal circadian variation is necessary for animal well-being. Animals should be housed within tem- perature and humidity ranges appropriate for the species, to which they can adapt with minimal stress and physiologic alteration. The ambient temperature range in which thermoregulation occurs with- out the need to increase metabolic heat production or activate evaporative heat loss mechanisms is called the thermoneutral zone (TNZ) and is bounded by the lower and upper critical temperatures (LCTs and UCTs; Gordon 2005). To maintain body temperature under a given environmental temperature animals adjust physiologically (including their metabolism) and behavior- ally (including their activity level and resource use). For example, the TNZ of mice ranges between 26°C and 34°C (Gordon 1993); at lower tempera- tures, building nests and huddling for resting and sleeping allow them to thermoregulate by behaviorally controlling their microclimate. Although mice choose temperatures below their LCT of 26°C during activity periods, they strongly prefer temperatures above their LCT for maintenance and rest- ing behaviors (Gaskill et al. 2009; Gordon 2004; Gordon et al. 1998). Simi- lar LCT values are found in the literature for other rodents, varying between 26-30°C for rats and 28-32°C for gerbils (Gordon 1993). The LCTs of rabbits (15-20°C; Gonzalez et al. 1971) and cats and dogs (20-25°C) are slightly lower, while those of nonhuman primates and farm animals vary depending on the species. In general, dry-bulb temperatures in animal rooms should be set below the animals’ LCT to avoid heat stress. This, in turn, means that animals should be provided with adequate resources for thermoregulation (nesting material, shelter) to avoid cold stress. Adequate resources for ther- moregulation are particularly important for newborn animals whose LCT is normally considerably higher than that of their adult conspecifics. Environmental temperature and relative humidity can be affected by husbandry and housing design and can differ considerably between primary and secondary enclosures as well as within primary enclosures. Factors that contribute to variation in temperature and humidity between and within enclosures include housing design; construction material; enrichment devices such as shelters and nesting material; use of filter tops; number, age, type, and size of the animals in each enclosure; forced ventilation of enclosures; and the type and frequency of contact bedding changes (Besch 1980). Exposure to wide temperature and humidity fluctuations or extremes may result in behavioral, physiologic, and morphologic changes, which might negatively affect animal well-being and research performance as well as outcomes of research protocols (Garrard et al. 1974; Gordon 1990,

OCR for page 41
44 GUIdE FOR ThE CARE ANd USE OF LAbORATORy ANIMALS 1993; Pennycuik 1967). These effects can be multigenerational (Barnett 1965, 1973). The dry-bulb temperatures listed in Table 3.1 are broad and generally reflect tolerable limits for common adult laboratory animal species, provided they are housed with adequate resources for behavioral thermoregulation; temperatures should normally be selected and maintained with minimal fluctuation near the middle of these ranges. Depending on the specific housing system employed, the selection of appropriate macro- and micro- environmental temperatures will differ based on a variety of factors, includ- ing but not limited to the species or strain, age, numbers of animals in the enclosure, size and construction of the primary enclosure, and husbandry conditions (e.g., use/provision of contact bedding, nesting material and/or shelter, individually ventilated cages). Poikilotherms and young birds of some species generally require a thermal gradient in their primary enclosure to meet basic physiological processes. The temperature ranges shown may not apply to captive wild animals, wild animals maintained in their natural environment, or animals in outdoor enclosures that have the opportunity to adapt by being exposed to seasonal changes in ambient conditions. Some conditions require increased environmental temperatures for housing (e.g., postoperative recovery, neonatal animals, rodents with hair- less phenotypes, reptiles and amphibians at certain stages of reproduction). The magnitude of the temperature increase depends on housing details; sometimes raising the temperature in the microenvironment alone (e.g., by using heating pads for postoperative recovery or radiant heat sources for reptiles) rather than raising the temperature of the macroenvironment is sufficient and preferable. Relative humidity should also be controlled, but not nearly as narrowly as temperature for many mammals; the acceptable range of relative humid- ity is considered to be 30% to 70% for most mammalian species. Micro- TABLE 3.1 Recommended Dry-Bulb Macroenvironmental Temperatures for Common Laboratory Animals Dry-Bulb Temperature Animal °C °F Mouse, rat, hamster, gerbil, guinea piga 20-26 68-79 Rabbit 16-22 61-72 Cat, dog, nonhuman primate 18-29 64-84 Farm animals, poultry 16-27 61-81 aDry-bulb room temperature settings for rodents are typically set below the animals’ LCT to avoid heat stress, and should reflect different species-specific LCT values. Animals should be provided with adequate resources for thermoregulation (nesting material, shelter) to avoid cold stress.

OCR for page 41
45 ENVIRONMENT, hOUSING, ANd MANAGEMENT environmental relative humidity may be of greater importance for animals housed in a primary enclosure in which the environmental conditions differ greatly from those of the macroenvironment (e.g., in static filter-top [isola- tor] cages). Some species may require conditions with high relative humidity (e.g., selected species of nonhuman primates, tropical reptiles, and amphibians; Olson and Palotay 1983). In mice, both abnormally high and low humid- ity may increase preweaning mortality (Clough 1982). In rats, low relative humidity, especially in combination with temperature extremes, may lead to ringtail, a condition involving ischemic necrosis of the tail and sometimes toes (Crippa et al. 2000; Njaa et al. 1957; Totten 1958). For some species, elevated relative humidity may affect an animal’s ability to cope with ther- mal extremes. Elevated microenvironmental relative humidity in rodent isolator cages may also lead to high intracage ammonia concentrations (Corning and Lipman 1991; Hasenau et al. 1993), which can be irritating to the nasal passages and alter some biologic responses (Gordon et al. 1980; Manninen et al. 1998). In climates where it is difficult to provide a sufficient level of environmental relative humidity, animals should be closely moni- tored for negative effects such as excessively flaky skin, ecdysis (molting) difficulties in reptiles, and desiccation stress in semiaquatic amphibians. Ventilation and Air Quality The primary purpose of ventilation is to provide appropriate air quality and a stable environment. Specifically, ventilation provides an adequate oxygen supply; removes thermal loads caused by the animals, personnel, lights, and equipment; dilutes gaseous and particulate contaminants includ- ing allergens and airborne pathogens; adjusts the moisture content and temperature of room air; and, where appropriate, creates air pressure dif- ferentials (directional air flow) between adjoining spaces. Importantly, ven- tilating the room (i.e., the macroenvironment) does not necessarily ensure adequate ventilation of an animal’s primary enclosure (i.e., the microenvi- ronment), that is, the air to which the animal is actually exposed. The type of primary enclosure may considerably influence the differences between these two environments—for example, differences may be negligible when animals are housed in open caging or pens, whereas they can be significant when static isolator cages are used. The volume and physical characteristics of the air supplied to a room and its diffusion pattern influence the ventilation of an animal’s primary enclosure and are important determinants of the animal’s microenviron- ment. The type and location of supply air diffusers and exhaust registers in relation to the number, arrangement, location, and type of primary and secondary enclosures affect how well the microenvironments are ventilated

OCR for page 41
46 GUIdE FOR ThE CARE ANd USE OF LAbORATORy ANIMALS and should therefore be considered. The use of computer modeling for assessing those factors in relation to heat loading, air diffusion patterns, and particulate movement may be helpful in optimizing ventilation of micro- and macroenvironments (Hughes and Reynolds 1995). Direct exposure of animals to air moving at high velocity (drafts) should be avoided as the speed of air to which animals are exposed affects the rate at which heat and moisture are removed from an animal. For example, air at 20°C moving at 60 linear feet per minute (18.3 m/min) has a cooling effect of approximately 7°C (Weihe 1971). Drafts can be particularly problematic for neonatal homeotherms (which may be hairless and have poorly devel- oped mechanisms for thermoregulatory control), for mutants lacking fur, and for semiaquatic amphibians that can desiccate. Provision of 10 to 15 fresh air changes per hour in animal housing rooms is an acceptable guideline to maintain macroenvironmental air qual- ity by constant volume systems and may also ensure microenvironmental air quality. Although this range is effective in many animal housing settings, it does not take into account the range of possible heat loads; the species, size, and number of animals involved; the type of primary enclosure and bedding; the frequency of cage changing; the room dimensions; or the effi- ciency of air distribution both in the macroenvironment and between the macro- and microenvironments. In some situations, the use of such a broad guideline might overventilate a macroenvironment containing few animals, thereby wasting energy, or underventilate a microenvironment containing many animals, allowing heat, moisture, and pollutants to accumulate. Modern heating, ventilation, and air conditioning (HVAC) systems (e.g., variable air volume, or VAV, systems) allow ventilation rates to be set in accordance with heat load and other variables. These systems offer con- siderable advantages with respect to flexibility and energy conservation, but should always provide a minimum amount of air exchange, as recom- mended for general use laboratories (Bell 2008; DiBerardinis et al. 2009). Individually ventilated cages (IVCs) and other types of specialized pri- mary enclosures, that either directly ventilate the enclosure using filtered room air or are ventilated independently of the room, can effectively address animals’ ventilation requirements without the need to increase macroenvi- ronmental ventilation. However, cautions mentioned above regarding high- velocity air should be considered (Baumans et al. 2002; Krohn et al. 2003). Nevertheless, the macroenvironment should be ventilated sufficiently to address heat loads, particulates, odors, and waste gases released from pri- mary enclosures (Lipman 1993). If ventilated primary enclosures have adequate filtration to address con- tamination risks, air exhausted from the microenvironment may be returned to the room in which animals are housed, although it is generally prefer-

OCR for page 41
4 ENVIRONMENT, hOUSING, ANd MANAGEMENT able to exhaust these systems directly into the building’s exhaust system to reduce heat load and macroenvironmental contamination. Static isolation caging (without forced ventilation), such as that used in some types of rodent housing, restricts ventilation (Keller et al. 1989). To compensate, it may be necessary to adjust husbandry practices, including sanitation and cage change frequency, selection of contact bedding, place- ment of cages in a secondary enclosure, animal densities in cages, and/or decrease in macroenvironmental relative humidity to improve the microen- vironment and heat dissipation. The use of recycled air to ventilate animal rooms may save energy but entails risks. Because many animal pathogens can be airborne or travel on fomites (e.g., dust), exhaust air recycled into HVAC systems that serve multiple rooms presents a risk of cross contamination. Recycling air from nonanimal use areas (e.g., some human occupancy areas and food, bed- ding, and supply storage areas) may require less intensive filtration or conditioning and pose less risk of infection. The risks in some situations, however, might be too great to consider recycling (e.g., in the case of non- human primates and biohazard areas). The exhaust air to be recycled should be filtered, at minimum, with 85-95% ASHRAE efficient filters to remove airborne particles before it is recycled (NAFA 1996). Depending on the air source, composition, and proportion of recycled air used (e.g., ammonia and other gases emitted from excrement in recirculating air from animal rooms), consideration should also be given to filtering volatile substances. In areas that require filtration to ensure personnel and/or animal safety (e.g., hazardous containment holding), filter efficiency, loading, and integrity should be assessed. The successful operation of any HVAC system requires regular preven- tive maintenance and evaluation, including measurement of its function at the level of the secondary enclosure. Such measurements should include supply and exhaust air volumes, fluctuation in temperature and relative humidity, and air pressure differentials between spaces as well as critical mechanical operating parameters. Illumination Light can affect the physiology, morphology, and behavior of various animals (Azar et al. 2008; Brainard et al. 1986; Erkert and Grober 1986; Newbold et al. 1991; Tucker et al. 1984). Potential photostressors include inappropriate photoperiod, photointensity, and spectral quality of the light (Stoskopf 1983). Numerous factors can affect animals’ needs for light and should be considered when an appropriate illumination level is being established for an animal holding room. These include light intensity and wavelength as

OCR for page 41
48 GUIdE FOR ThE CARE ANd USE OF LAbORATORy ANIMALS well as the duration of the animal’s current and prior exposure to light, and the animal’s pigmentation, circadian rhythm, body temperature, hormonal status, age, species, sex, and stock or strain (Brainard 1989; Duncan and O’Steen 1985; O’Steen 1980; Saltarelli and Coppola 1979; Semple-Row- land and Dawson 1987; Wax 1977). More recent studies in rodents and primates have shown the importance of intrinsically photosensitive retinal ganglion cells (distinct from rods and cones) for neuroendocrine, circadian, and neurobehavioral regulation (Berson et al. 2002; Hanifin and Brainard 2007). These cells can respond to light wavelengths that may differ from other photoreceptors and may influence the type of lighting, light intensity, and wavelength selected for certain types of research. In general, lighting should be diffused throughout an animal hold- ing area and provide sufficient illumination for the animals’ well-being while permitting good housekeeping practices, adequate animal inspection including for the bottom-most cages in racks, and safe working condi- tions for personnel. Light in animal holding rooms should provide for both adequate vision and neuroendocrine regulation of diurnal and circadian cycles (Brainard 1989). Photoperiod is a critical regulator of reproductive behavior in many ani- mal species (Brainard et al. 1986; Cherry 1987), so inadvertent light expo- sure during the dark cycle should be minimized or avoided. Because some species, such as chickens (Apeldoorn et al. 1999), will not eat in low light or darkness, such illumination schedules should be limited to a duration that will not compromise their well-being. A time-controlled lighting system should be used to ensure a regular diurnal cycle, and system performance should be checked regularly to ensure proper cycling. Most commonly used laboratory rodents are nocturnal. Because albino rodents are more susceptible to phototoxic retinopathy than other animals (Beaumont 2002), they have been used as a basis for establishing room illumination levels (Lanum 1979). Data for room light intensities for other animals, based on scientific studies, are not available. Light levels of about 325 lux (30-ft candles) approximately 1 m (3.3 ft) above the floor appear to be sufficient for animal care and do not cause clinical signs of phototoxic retinopathy in albino rats (Bellhorn 1980). Levels up to 400 lux (37-ft candles) as measured in an empty room 1 m from the floor have been found to be satisfactory for rodents if management practices are used to prevent retinal damage in albinos (Clough 1982). However, the light experience of an individual animal can affect its sensitivity to phototoxicity; light of 130-270 lux above the light intensity under which it was raised has been reported to be near the threshold of retinal damage in some individual albino rats according to histologic, morphometric, and electrophysiologic evidence (Semple-Rowland and Dawson 1987). Some guidelines recom- mend a light intensity as low as 40 lux at the position of the animal in

OCR for page 41
4 ENVIRONMENT, hOUSING, ANd MANAGEMENT midcage (NASA 1988). Rats and mice generally prefer cages with low light intensity (Blom et al. 1996), and albino rats prefer areas with a light intensity of less than 25 lux (Schlingmann et al. 1993a). Young mice prefer much lower illumination than adults (Wax 1977). For animals that have been shown to be susceptible to phototoxic retinopathy, light should be between 130 and 325 lux in the room at cage level. Light intensity decreases with the square of the distance from its source. Thus the location of a cage on a rack affects the intensity of light to which the animals within are exposed. Light intensity may differ as much as 80- fold in transparent cages from the top to the bottom of a rack, and differ- ences up to 20-fold have been recorded within a cage (Schlingmann et al. 1993a,b). Management practices, such as rotating cage position relative to the light source (Greenman et al. 1982) or providing animals with ways to control their own light exposure by behavioral means (e.g., nesting or bedding material adequate for tunneling), can reduce inappropriate light stimulation. Variable-intensity lights are often used to accommodate the needs of research protocols, certain animal species, and energy conserva- tion. However, such a system should also provide for the observation and care of the animals. Caution should be exercised as increases in daytime room illumination for maintenance purposes have been shown to change photoreceptor physiology and can alter circadian regulation (NRC 1996; Reme et al. 1991; Terman et al. 1991). Noise and Vibration Noise produced by animals and animal care activities is inherent in the operation of an animal facility (Pfaff and Stecker 1976) and noise control should be considered in facility design and operation (Pekrul 1991). Assess- ment of the potential effects of noise on an animal warrants consideration of the intensity, frequency, rapidity of onset, duration, and vibration potential of the sound and the hearing range, noise exposure history, and sound effect susceptibility of the species, stock, or strain. Similarly, occupational exposure to animal or animal care practices that generate noise may be of concern for personnel and, if of sufficient intensity, may warrant hearing protection. Separation of human and animal areas minimizes disturbances to both human and animal occupants of the facility. Noisy animals, such as dogs, swine, goats, nonhuman primates, and some birds (e.g., zebra finches), should be housed away from quieter animals, such as rodents, rabbits, and cats. Environments should be designed to accommodate animals that make noise rather than resorting to methods of noise reduction. Exposure to sound louder than 85 dB can have both auditory and nonauditory effects (Fletcher 1976; Peterson 1980)—for example, eosinopenia, increased adrenal gland weights, and reduced fertility in rodents (Geber et al. 1966; Nayfield and

OCR for page 41
50 GUIdE FOR ThE CARE ANd USE OF LAbORATORy ANIMALS Besch 1981; Rasmussen et al. 2009), and increased blood pressure in nonhuman primates (Peterson et al. 1981)—and may necessitate hearing protection for personnel (OSHA 1998). Many species can hear sound fre- quencies inaudible to humans (Brown and Pye 1975; Heffner and Heffner 2007); rodents, for example, are very sensitive to ultrasound (Olivier et al. 1994). The potential effects of equipment (such as video display terminals; Sales 1991; Sales et al. 1999) and materials that produce noise in the hear- ing range of nearby animals can thus become an uncontrolled variable for research experiments and should therefore be carefully considered (Turner et al. 2007; Willott 2007). To the greatest extent possible, activities that generate noise should be conducted in rooms or areas separate from those used for animal housing. Because changes in patterns of sound exposure have different effects on different animals (Armario et al. 1985; Clough 1982), personnel should try to minimize the production of unnecessary noise. Excessive and intermittent noise can be minimized by training personnel in alternatives to noisy prac- tices, the use of cushioned casters and bumpers on carts, trucks, and racks, and proper equipment maintenance (e.g., castor lubrication). Radios, alarms, and other sound generators should not be used in animal rooms unless they are part of an approved protocol or enrichment program. Any radios or sound generators used should be switched off at the end of the working day to mini- mize associated adverse physiologic changes (Baldwin 2007). While some vibration is inherent to every facility and animal housing condition, excessive vibration has been associated with biochemical and reproductive changes in laboratory animals (Briese et al. 1984; Carman et al. 2007) and can become an uncontrolled variable for research experiments. The source of vibrations may be located within or outside the animal facil- ity. In the latter case, groundborne vibration may affect both the structure and its contents, including animal racks and cages. Housing systems with moving components, such as ventilated caging system blowers, may cre- ate vibrations that could affect the animals housed within, especially if not functioning properly. Like noise, vibration varies with intensity, frequency, and duration. A variety of techniques may be used to isolate groundborne (see Chapter 5) and equipment-generated vibration (Carman et al. 2007). Attempts should be made to minimize the generation of vibration, including from humans, and excessive vibration should be avoided. Terrestrial Housing Microenironment (Primary Enclosure) All animals should be housed under conditions that provide sufficient space as well as supplementary structures and resources required to meet

OCR for page 41
51 ENVIRONMENT, hOUSING, ANd MANAGEMENT physical, physiologic, and behavioral needs. Environments that fail to meet the animals’ needs may result in abnormal brain development, physiologic dysfunction, and behavioral disorders (Garner 2005; van Praag et al. 2000; Würbel 2001) that may compromise both animal well-being and scientific validity. The primary enclosure or space may need to be enriched to prevent such effects (see also section on Environmental Enrichment). An appropriate housing space or enclosure should also account for the animals’ social needs. Social animals should be housed in stable pairs or groups of compatible individuals unless they must be housed alone for experimental reasons or because of social incompatibility (see also section on Behavioral and Social Management). Structural adjustments are fre- quently required for social housing (e.g., perches, visual barriers, refuges), and important resources (e.g., food, water, and shelter) should be provided in such a way that they cannot be monopolized by dominant animals (see also section on Environmental Enrichment). The primary enclosure should provide a secure environment that does not permit animal escape and should be made of durable, nontoxic materi- als that resist corrosion, withstand the rigors of cleaning and regular han- dling, and are not detrimental to the health and research use of the animals. The enclosure should be designed and manufactured to prevent accidental entrapment of animals or their appendages and should be free of sharp edges or projections that could cause injury to the animals or personnel. It should have smooth, impervious surfaces with minimal ledges, angles, corners, and overlapping surfaces so that accumulation of dirt, debris, and moisture is minimized and cleaning and disinfecting are not impaired. All enclosures should be kept in good repair to prevent escape of or injury to animals, promote physical comfort, and facilitate sanitation and servic- ing. Rusting or oxidized equipment, which threatens the health or safety of animals, needs to be repaired or replaced. Less durable materials, such as wood, may be appropriate in select situations, such as outdoor corrals, perches, climbing structures, resting areas, and perimeter fences for primary enclosures. Wooden items may need to be replaced periodically because of damage or difficulties with sanitation. Painting or sealing wood surfaces with nontoxic materials may improve durability in many instances. Flooring should be solid, perforated, or slatted with a slip-resistant sur- face. In the case of perforated or slatted floors, the holes and slats should have smooth edges. Their size and spacing need to be commensurate with the size of the housed animal to minimize injury and the development of foot lesions. If wire-mesh flooring is used, a solid resting area may be beneficial, as this floor type can induce foot lesions in rodents and rabbits (Drescher 1993; Fullerton and Gilliatt 1967; Rommers and Meijerhof 1996). The size and weight of the animal as well as the duration of housing on wire-mesh floors may also play a role in the development of this condi-

OCR for page 41
4 GUIdE FOR ThE CARE ANd USE OF LAbORATORy ANIMALS Hankenson FC, Garzel LM, Fischer DD, Nolan B, Hankenson KD. 2008. Evaluation of tail bi- opsy collection in laboratory mice (Mus musculus): Vertebral ossification, DNA quantity, and acute behavioral responses. JAALAS 47(6):10-18. Hanifin JP, Brainard GC. 2007. Photoreception for circadian, neuroendocrine, and neurobe- havioral regulation. J Physiol Anthropol 26:87-94. Hartl DL. 2000. A Primer of Population Genetics, 3rd ed. Sunderland, MA: Sinauer Associates. Hasenau JJ, Baggs RB, Kraus AL. 1993. Microenvironments in microisolation cages using BALB/c and CD-1 Mice. Contemp Top Lab Anim Sci 32:11-16. Hedrich HJ. 1990. Genetic Monitoring of Inbred Strains of Rats. New York: Gustav Fischer Verlag. Heffner HE, Heffner RS. 2007. Hearing ranges of laboratory animals. JAALAS 46:20-22. Held SDE, Turner RJ, Wootton RJ. 1995. Choices of laboratory rabbits for individual or group- housing. Appl Anim Behav Sci 46:81-91 Hermann LM, White WJ, Lang CM. 1982. Prolonged exposure to acid, chlorine, or tetracycline in drinking water: Effects on delayed-type hypersensitivity, hemagglutination titers, and reticuloendothelial clearance rates in mice. Lab Anim Sci 32:603-608. Hess SE, Rohr S, Dufour BD, Gaskill BN, Pajor EA, Garner JP. 2008. Home improvement: C57BL/6J mice given more naturalistic nesting materials build better nests. JAALAS 47:25-31. Hilken G, Dimigen J, Iglauer F. 1995. Growth of Xenopus laeis under different laboratory rearing conditions. Lab Anim 29:152-162. Hill D. 1999. Safe handling and disposal of laboratory animal waste. Occup Med 14:449-468. Hoffman HA, Smith KT, Crowell JS, Nomura T, Tomita T. 1980. Genetic quality control of laboratory animals with emphasis on genetic monitoring. In: Spiegel A, Erichsen S, Sol- leveld HA, eds. Animal Quality and Models in Biomedical Research. Stuttgart: Gustav Fischer Verlag. p 307-317. Homberger FR, Pataki Z, Thomann PE. 1993. Control of Pseudomonas aeruginosa infection in mice by chlorine treatment of drinking water. Lab Anim Sci 43:635-637. Hotchkiss CE, Paule MG. 2003. Effect of pair-housing on operant behavior task performance by rhesus monkeys. Contemp Top Lab Anim Sci 42:38-41. Hubrecht RC. 1993. A comparison of social and environmental enrichment methods for labora- tory housed dogs. Appl Anim Behav Sci 37:345-361. Hughes HC, Reynolds S. 1995. The use of computational fluid dynamics for modeling air flow design in a kennel facility. Contemp Top Lab Anim Sci 34:49-53 Ikemoto S, Panksepp J. 1992. The effect of early social isolation on the motivation for social play in juvenile rats. Dev Psychobiol 25:261-274. Ivy AS, Brunson KL, Sandman C, Baram TZ. 2008. Dysfunctional nurturing behavior in rat dams with limited access to nesting material: A clinically relevant model for early-life stress. Neuroscience 154:1132-1142. Jacobs BB, Dieter DK. 1978. Spontaneous hepatomas in mice inbred from Ha:ICR Swiss stock: Effects of sex, cedar shavings in bedding, and immunization with fetal liver or hepatoma cells. J Natl Cancer Inst 61:1531-1534. Jones DM. 1977. The occurrence of dieldrin in sawdust used as bedding material. Lab Anim 11:137. Karolewicz B, Paul IA. 2001. Group housing of mice increases immobility and antidepressant sensitivity in the forced swim and tail suspension tests. Eur J Pharmacol 415:97-201. Kaufman BM, Pouliot AL, Tiefenbacher S, Novak MA. 2004. Short- and long-term effects of a substantial change in cage size on individually housed, adult male rhesus monkeys (Macaca mulatta). Appl Anim Behav Sci 88:319-330.

OCR for page 41
5 ENVIRONMENT, hOUSING, ANd MANAGEMENT Kaye GI, Weber PB, Evans A, Venezia RA. 1998. Efficacy of alkaline hydrolysis as an alterna- tive method for treatment and disposal of infectious animal waste. Contemp Top Lab Anim Sci 37:43-46. Keenan KP, Smith PF, Soper KA. 1994. Effect of dietary (caloric) restriction on aging, survival, pathobiology and toxicology. In: Notter W, Dungworth DL, Capen CC, eds. Pathobiology of the Aging Rat, vol 2. Washington: International Life Sciences Institute. p 609-628. Keenan KP, Laroque P, Ballam GC, Soper KA, Dixit R, Mattson BA, Adams SP, Coleman JB. 1996. The effects of diet, ad libitum overfeeding, and moderate dietary restriction on the rodent bioassay: The uncontrolled variable in safety assessment. Toxicol Pathol 24:757-768. Keller LSF, White WJ, Snyder MT, Lang CM. 1989. An evaluation of intracage ventilation in three animal caging systems. Lab Anim Sci 39:237-242. Kempthorne O. 1957. An Introduction to Genetic Statistics. New York: John Wiley and Sons. King JE, Bennett GW. 1989. Comparative activity of fenoxycarb and hydroprene in sterilizing the German cockroach (Dictyoptera: Blattellidae). J Econ Entomol 82:833-838. Knapka JJ. 1983. Nutrition. In: Foster HL, Small JD, Fox JG, eds. The Mouse in Biomedical Research, vol III: Normative Biology, Immunology and Husbandry. New York: Academic Press. p 52-67. Koerber AS, Kalishman J. 2009. Preparing for a semi-annual IACUC inspection of a satellite zebrafish (danio rerio) facility. JAALAS 48:65-75. Kraft LM. 1980. The manufacture, shipping and receiving, and quality control of rodent bed- ding materials. Lab Anim Sci 30:366-376. Krause J, McDonnell G, Riedesel H. 2001. Biodecontamination of animal rooms and heat- sensitive equipment with vaporized hydrogen peroxide. Contemp Top Lab Anim Sci 40: 8-21. Krohn TC, Hansen AK, Dragsted N. 2003. The impact of cage ventilation on rats housed in IVC systems. Lab Anim 37:85-93. Laber K, Veatch L, Lopez M, Lathers D. 2008. The impact of housing density on weight gain, immune function, behavior, and plasma corticosterone levels in BALB/c and C57Bl/6 mice. JAALAS 47:6-23. Lacy RC. 1989. Analysis of founder representation in pedigrees: Founder equivalents and founder genome equivalents. Zoo Biol 8:111-123. Lanum J. 1979. The damaging effects of light on the retina: Empirical findings, theoretical and practical implications. Surv Ophthalmol 22:221-249. Laule GE, Bloomsmith MA, Schapiro SJ. 2003 The use of positive reinforcement training tech- niques to enhance the care, management, and welfare of primates in the laboratory. J Appl Anim Welf Sci 6:163-173. Lawler DF, Larson BT, Ballam JM, Smith GK, Biery DN, Evan RH, Greeley EH, Segre M, Stowe HD, Kealy RD. 2008. Diet restriction and ageing in the dog: Major observations over two decades. Br J Nutr 99:793-805. Lawlor MM. 2002. Comfortable quarters for rats in research institutions. In: Reinhardt V, Rein- hardt A, eds. Comfortable Quarters for Laboratory Animals, 9th ed. Washington: Animal Welfare Institute. p 26-32. Lawrence C. 2007. The husbandry of zebrafish (danio rerio): A review. Aquaculture 269:1-20. Leveille GA, Hanson RW. 1966. Adaptive changes in enzyme activity and metabolic pathways in adipose tissue from meal-fed rats. J Lipid Res 7:46. Linder CC. 2003. Mouse nomenclature and maintenance in genetically engineered mice. Comp Med 53:119-125. Lipman NS. 1993. Strategies for architectural integration of ventilated caging systems. Contemp Top Lab Anim Sci 32:7-10.

OCR for page 41
6 GUIdE FOR ThE CARE ANd USE OF LAbORATORy ANIMALS Liu L, Nutter LMJ, Law N, McKerlie C. 2009. Sperm freezing and in vitro fertilization on three substrains of C57BL/6 mice. JAALAS 48:39-43. Lupo C, Fontani G, Girolami L, Lodi L, Muscettola M. 2000. Immune and endocrine aspects of physical and social environmental variations in groups of male rabbits in seminatural conditions. Ethol Ecol Evol 12:281-289. Lutz CK, Novak MA. 2005. Environmental enrichment for nonhuman primates: Theory and application. ILAR J 46:178-191. MacCluer JW, VandeBerg JL, Read B, Ryder OA. 1986. Pedigree analysis by computer simu- lation. Zoo Biol 5:147-160. MacLean EL, Prior RS, Platt ML, Brannon EM. 2009. Primate location preference in a double- tier cage: The effects of illumination and cage height. J Anim Welf Sci 12:73-81. Macrì S, Pasquali P, Bonsignore LT, Pieretti S, Cirulli F, Chiarotti F, Laviola G. 2007. Moderate neonatal stress decreases within-group variation in behavioral, immune and HPA respon- ses in adult mice. PLoS One 2(10):e1015. Maniero GD, Carey C. 1997. Changes in selected aspects of immune function in leopard frog, Rana pipiens, associated with exposure to cold. J Comp Physiol B 167:256-263. Manninen AS, Antilla S, Savolainen H. 1998. Rat metabolic adaptation to ammonia inhalation. Proc Soc Biol Med 187:278-281. Manser CE, Morris TH, Broom DM. 1995. An investigation into the effects of solid or grid cage flooring on the welfare of laboratory rats. Lab Anim 29:353-363. Manser CE, Elliott H, Morris TH, Broom DM. 1996. The use of a novel operant test to deter- mine the strength of preference for flooring in laboratory rats. Lab Anim 30:1-6. Manser CE, Broom DM, Overend P, Morris TM. 1997. Operant studies to determine the strength of preference in laboratory rats for nest boxes and nest materials. Lab Anim 32:36-41. Manser CE, Broom DM, Overend P, Morris TM. 1998. Investigations into the preferences of laboratory rats for nest boxes and nesting materials. Lab Anim 32:23-35. Martin B, Ji S, Maudsley S, Mattson MP. 2010. “Control” laboratory rodents are metabolically morbid: Why it matters. Proc Nat Acad Sci USA 107:6127-6133. Mason G, Littin KE. 2003. The humaneness of rodent pest control. Anim Welf 12:1-37. Matthews M, Trevarrow B, Matthews J. 2002. A virtual tour of the guide for zebrafish users. Lab Anim 31:34-40. McCune S. 1997. Enriching the environment of the laboratory cat: A review. In: Proceedings of the Second International Conference on Environmental Enrichment, August 21-25, 1995, Copenhagen Zoo, Denmark. p 103-117. McGlone JJ, Anderson DL, Norman RL. 2001. Floor space needs for laboratory mice: BALB/ cJ males or females in solid-bottom cages with bedding. Contemp Top Lab Anim Sci 40:21-25. Meerburg BG, Brom FWA, Kijlstra A. 2008. The ethics of rodent control. Pest Manag Sci 64:1205-1211. Meier TR, Maute CJ, Cadillac JM, Lee JY, Righter DJ, Hugunin KMS, Deininger RA, Dysko RC. 2008. Quantification, distribution, and possible source of bacterial biofilm in mouse automated watering systems. JAVMA 42:63-70. Memarzadeh F, Harrison PC, Riskowski GL, Henze T. 2004. Comparisons of environment and mice in static and mechanically ventilated isolator cages with different air velocities and ventilation designs. Contemp Top Lab Anim Sci 43:14-20. MGI [Mouse Genome Informatics]. 2009. Guidelines for Nomenclature of Genes, Genetic Mark- ers, Alleles, and Mutations in Mouse and Rat. International Committee on Standardized Genetic Nomenclature for Mice and Rat Genome and Nomenclature Committee. Available at www.informatics.jax.org/mgihome/nomen/gene.shtml; accessed May 10, 2010. Moore BJ. 1987. The California diet: An inappropriate tool for studies of thermogenesis. J Nutrit 117:227-231.

OCR for page 41
 ENVIRONMENT, hOUSING, ANd MANAGEMENT Murphy RGL, Scanga JA, Powers BE, Pilon JL, VerCauteren KC, Nash PB, Smith GC, Belk KE. 2009. Alkaline hydrolysis of mouse-adapted scrapie for inactivation and disposal of prion- positive material. J Anim Sci 87:1787-1793. Nadelkov M. 1996. EPA impact on pathological incineration: What will it take to comply? Lab Anim 25:35-38. NAFA [National Air Filtration Association]. 1996. NAFA Guide to Air Filtration, 2nd ed. Virginia Beach. NASA [National Aeronautics and Space Administration]. 1988. Summary of conclusions reached in workshop and recommendations for lighting animal housing modules used in microgravity related projects. In: Holley DC, Winget CM, Leon HA, eds. Lighting Require- ments in Microgravity: Rodents and Nonhuman Primates. NASA Technical Memorandum 101077. Moffett Field, CA: Ames Research Center. p 5-8. Nayfield KC, Besch EL. 1981. Comparative responses of rabbits and rats to elevated noise. Lab Anim Sci 31:386-390. Nevalainen T, Vartiainen T. 1996. Volatile organic compounds in commonly used beddings before and after autoclaving. Scand J Lab Anim Sci 23:101-104. Newberne PM. 1975. Influence on pharmacological experiments of chemicals and other fac- tors in diets of laboratory animals. Fed Proc 34:209-218. Newberry RC. 1995. Environmental enrichment: Increasing the biological relevance of captive environments. Appl Anim Beh Sci 44:229-243. Newbold JA, Chapin LT, Zinn SA, Tucker HA. 1991. Effects of photoperiod on mammary development and concentration of hormones in serum of pregnant dairy heifers. J Dairy Sci 74:100-108. Nickum JG, Bart HL Jr, Bowser PR. 2004. Guidelines for the Use of Fishes in Research. Bethesda, MD: American Fisheries Society. Njaa LR, Utne F, Braekkan OR. 1957. Effect of relative humidity on rat breeding and ringtail. Nature 180:290-291. Novak MA, Meyer JS, Lutz C, Tiefenbacher S. 2006. Deprived environments: Developmental insights from primatology. In: Mason G, Rushen J, eds. Stereotypic Animal Behaviour: Fundamentals and Applications to Welfare. Wallingford, UK: CABI. p 153-189. Novak MF, Kenney C, Suomi SJ, Ruppenthal GC. 2007. Use of animal-operated folding perches by rhesus macaques (Macaca mulatta). JAALAS 46:35-43. NRC [National Research Council]. 1974. Amphibians: Guidelines for the Breeding, Care and Management of Laboratory Animals. Washington: National Academy of Sciences. NRC. 1977. Nutrient Requirements of Rabbits, 2nd rev ed. Washington: National Academy Press. NRC. 1979a. Laboratory Animal Records. Washington: National Academy Press. NRC. 1979b. Laboratory animal management: Genetics. ILAR News 23(1):A1-A16. NRC. 1982. Nutrient Requirements of Mink and Foxes, 2nd rev ed. Washington: National Academy Press. NRC. 1989. Biosafety in the Laboratory: Prudent Practices for the Handling and Disposal of Infectious Materials. Washington: National Academy Press. NRC. 1993. Nutrient Requirements of Fish. Washington: National Academy Press. NRC. 1994. Nutrient Requirements of Poultry, 9th rev ed. Washington: National Academy Press. NRC. 1995a. Nutrient Requirements of Laboratory Animals, 4th rev ed. Washington: National Academy Press. NRC. 1995b. Prudent Practices in the Laboratory: Handling and Disposal of Chemicals. Wash - ington: National Academy Press. NRC. 1996. Laboratory Animal Management: Rodents. Washington: National Academy Press.

OCR for page 41
8 GUIdE FOR ThE CARE ANd USE OF LAbORATORy ANIMALS NRC. 1998a. Psychological Well-being of Nonhuman Primates. Washington: National Acad- emy Press. NRC. 1998b. Nutrient Requirements of Swine, 10th rev ed. Washington: National Academy Press. NRC. 2000. Nutrient Requirements of Beef Cattle, 7th rev ed: Update 2000. Washington: National Academy Press. NRC. 2001. Nutrient Requirements of Dairy Cattle, 7th rev ed. Washington: National Academy Press. NRC. 2003a. Nutrient Requirements of Nonhuman Primates, 2nd rev ed. Washington: National Academies Press. NRC. 2003b. Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral Research. Washington: National Academies Press. NRC. 2006a. Preparation of Animals for Use in the Laboratory. ILAR J 43:281-375. NRC. 2006b. Nutrient Requirements of Dogs and Cats. Washington: National Academies Press. NRC. 2006c. Nutrient Requirements of Horses, 6th rev ed. Washington: National Academies Press. NRC. 2007. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. Washington: National Academies Press. Olivier B, Molewijk E, van Oorschot R, van der Poel G, Zethof T, van der Heyden J, Mos J. 1994. New animal models of anxiety. Eur Neuropsychopharmacol 4:93-102. Olson LC, Palotay JL. 1983. Epistaxis and bullae in cynomolgus macaques (Macaca fascicu- laris). Lab Anim Sci 33:377-379. Olsson IA, Dahlborn, K. 2002. Improving housing conditions for laboratory mice: A review of “environmental enrichment.” Lab Anim 36:243-270. OSHA [Occupational Safety and Health Administration]. 1998. Occupational Safety and Health Standards. Subpart G, Occupational Health and Environmental Controls, Occu- pational Noise Exposure (29 CFR 1910.95). Washington: Department of Labor. O’Steen WK. 1980. Hormonal influences in retinal photodamage. In: Williams TP, Baker BN, eds. The Effects of Constant Light on Visual Processes. New York: Plenum Press. p 29-49. Overall KL, Dyer D. 2005. Enrichment strategies for laboratory animals from the view - point of clinical behavioural veterinary medicine: Emphasis on cats and dogs. ILAR J 46:202-215. Overstreet RM, Barnes SS, Manning CS, Hawkins W. 2000. Facilities and husbandry (small fish model). In: Ostrander GK, ed. The Laboratory Fish. San Francisco: Academic Press. p 41-63. Parker A, Wilfred A, Hidell T. 2003. Environmental monitoring: The key to effective sanitation. Lab Anim 32:26-29. Peace TA, Singer AW, Niemuth NA, Shaw ME. 2001. Effects of caging type and animal source on the development of foot lesions in Sprague-Dawley rats (Rattus noregicus). Contemp Top Lab Anim Sci 40:17-21. Pekrul D. 1991. Noise control. In: Ruys T, ed. Handbook of Facilities Planning, vol 2: Labora- tory Animal Facilities. New York: Van Nostrand Reinhold. p 166-173. Pennycuik PR. 1967. A comparison of the effects of a range of high environmental temperatures and of two different periods of acclimatization on the reproductive performances of male and female mice. Aust J Exp Biol Med Sci 45:527-532. Perez C, Canal JR, Dominguez E, Campillo JE, Guillen M, Torres MD. 1997. Individual housing influences certain biochemical parameters in the rat. Lab Anim 31:357-361.

OCR for page 41
 ENVIRONMENT, hOUSING, ANd MANAGEMENT Perkins SE, Lipman NS. 1995. Characterization and qualification of microenvironmental con- taminants in isolator cages with a variety of contact bedding. Contemp Top Lab Anim Sci 34:93-98. Peterson EA. 1980. Noise and laboratory animals. Lab Anim Sci 30:422-439. Peterson EA, Augenstein JS, Tanis DC, Augenstein DG. 1981. Noise raises blood pressure without impairing auditory sensitivity. Science 211:1450-1452. Pfaff J, Stecker M. 1976. Loudness levels and frequency content of noise in the animal house. Lab Anim 10:111-117. Poiley SM. 1960. A systematic method of breeder rotation for non-inbred laboratory animal colonies. Proc Anim Care Panel 10:159-166. Poole T. 1998. Meeting a mammal’s psychological needs. In: Shepherdson DJ, Mellen JD, Hutchins M, eds. Second Nature: Environmental Enrichment for Captive Animals. Wash- ington: Smithsonian Institute Press. p 83-94. Pough FH. 1991. Recommendations for the care of amphibians and reptiles in academic institutions. ILAR J 33:1-16. Pough FH. 2007. Amphibian biology and husbandry. ILAR J 48:203-213. Raje S. 1997. Group housing for male New Zealand white rabbits. Lab Anim 26:36-38. Ras T, van de Ven M, Patterson-Kane EG, Nelson K. 2002. Rats’ preferences for corn versus wood-based bedding and nesting materials. Lab Anim 36:420-425. Rasmussen S, Glickman G, Norinsky R, Quimby F, Tolwani RJ. 2009. Construction noise de- creases reproductive efficiency in mice. JAALAS 48:263-270. Reeb CK, Jones R, Bearg D, Bedigan H, Myers D, Paigen B. 1998. Microenvironment in ven- tilated cages with differing ventilation rates, mice populations and frequency of bedding changes. JAALAS 37:70-74. Reeb-Whitaker CK, Paigen B, Beamer WG, Bronson RT, Churchill GA, Schweitzer IB, Myers DD. 2001. The impact of reduced frequency of cage changes on the health of mice housed in ventilated cages. Lab Anim 35:58-73. Reinhardt V. 1997. Training nonhuman primates to cooperate during handling procedures: A review. Anim Tech 48:55-73. Reme CE, Wirz-Justice A, Terman M. 1991. The visual input stage of the mammalian circadian pacemaking system. I: Is there a clock in the mammalian eye? J Biol Rhythms 6:5-29. Rennie AE, Buchanan-Smith HM. 2006. Refinement of the use of non-human primates in sci- entific research. Part I: The influence of humans. Anim Welf 15:203-213. Richmond JY, Hill RH, Weyant RS, Nesby-O‘Dell SL, Vinson PE. 2003. What’s hot in animal biosafety? ILAR J 44:20-27. Roberts-Thomson A, Barnes A, Filder DS, Lester RJG, Adlard RD. 2006. Aerosol dispersal of the fish pathogen Amyloodinium ocellatum. Aquaculture 257:118-123. Rock FM, Landi MS, Hughes HC, Gagnon RC. 1997. Effects of caging type and group size on selected physiologic variables in rats. Contemp Top Lab Anim Sci 36:69-72. Rollin BE. 1990. Ethics and research animals: Theory and practice. In: Rollin B, Kesel M, eds. The Experimental Animal in Biomedical Research, vol I: A Survey of Scientific and Ethical Issues for Investigators. Boca Raton, FL: CRC Press. p 19-36. Rommers J, Meijerhof R. 1996. The effect of different floor types on foot pad injuries of rabbit does. In: Proceedings of the 6th World Rabbit Science Congress 1996, Toulouse. p 431-436. Russell RJ, Festing MFW, Deeny AA, Peters AG. 1993. DNA fingerprinting for genetic monitor- ing of inbred laboratory rats and mice. Lab Anim Sci 43:460-465. Sales GD. 1991. The effect of 22 kHz calls and artificial 38 kHz signals on activity in rats. Behav Proc 24:83-93. Sales GD, Milligan SR, Khirnykh K. 1999. Sources of sound in the laboratory animal envi- ronment: A survey of the sounds produced by procedures and equipment. Anim Welf 8:97-115.

OCR for page 41
100 GUIdE FOR ThE CARE ANd USE OF LAbORATORy ANIMALS Saltarelli DG, Coppola CP. 1979. Influence of visible light on organ weights of mice. Lab Anim Sci 29:319-322. Sanford AN, Clark SE, Talham G, Sidelsky MG, Coffin SE. 2002. Influence of bedding type on mucosal immune responses. Comp Med 52:429-432. Schaefer DC, Asner IN, Seifert B, Bürki K, Cinelli P. 2010. Analysis of physiological and behav- ioural parameters in mice after toe clipping as newborns. Lab Anim 44:7-13. Schlingmann F, De Rijk SHLM, Pereboom WJ, Remie R. 1993a. Avoidance as a behavioural parameter in the determination of distress amongst albino and pigmented rats at various light intensities. Anim Tech 44:87-107. Schlingmann F, Pereboom W, Remie R. 1993b.The sensitivity of albino and pigmented rats to light. Anim Tech 44:71-85. Schoeb TR, Davidson MK, Lindsey JR. 1982. Intracage ammonia promotes growth of myco- plasma pulmonis in the respiratory tract of rats. Infect Immun 38:212-217. Schondelmeyer CW, Dillehay DL, Webb SK, Huerkamp MJ, Mook DM, Pullium JK. 2006. In- vestigation of appropriate sanitization frequency for rodent caging accessories: Evidence supporting less-frequent cleaning. JAALAS 45:40-43. Schultz TW, Dawson DA. 2003. Housing and husbandry of Xenopus for oocyte production. Lab Anim 32:34-39. Semple-Rowland SL, Dawson WW. 1987. Retinal cyclic light damage threshold for albino rats. Lab Anim Sci 37:289-298. Sherwin CM. 2002. Comfortable quarters for mice in research institutions. In: Reinhardt V, Reinhardt A, eds. Comfortable Quarters for Laboratory Animals, 9th ed. Washington: Animal Welfare Institute. p 6-17. Smith AL, Mabus SL, Stockwell JD, Muir C. 2004. Effects of housing density and cage floor space on C57BL/6J mice. Comp Med 54:656-663. Smith AL, Mabus SL, Muir C, Woo Y. 2005. Effect of housing density and cage floor space on three strains of young adult inbred mice. Comp Med 55:368-376. Smith E, Stockwell JD, Schweitzer I, Langley SH, Smith AL. 2004. Evaluation of cage micro- environment of mice housed on various types of bedding materials. Contemp Top Lab Anim Sci 43:12-17. Smith JL, Boyer GL, Zimba PV. 2008. A review of cyanobacterial odorous and bioactive me- tabolites: Impacts and management alternatives in aquaculture. Aquaculture 280:5-20. Smith ME, Kane AD, Popper AN. 2007. Noise-induced stress responsive and hearing loss in goldfish (Carassius auratus). J Exp Biol 207:427-435. Speedie N, Gerlai R. 2008. Alarm substance induced behavioral responses in zebrafish (danio rerio). Behav Brain Res 188:168-177. Spence R, Gerlach G, Lawrence C, Smith C. 2008. The behavior and ecology of the zebrafish, danio rerio. Biol Rev 83:13-34. St. Claire MB, Kennett MJ, Thomas ML, Daly JW. 2005. The husbandry and care of dendrobatid frogs. Contemp Top Lab Anim Sci 44:8-14. Stauffacher M. 1992. Group housing and enrichment cages for breeding, fattening and labora- tory rabbits. Anim Welf 1:105-125. Stoskopf MK. 1983. The physiological effects of psychological stress. Zoo Biol 2:179-190. Subramanian S, MacKinnon SL, Ross NW. 2007. A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp Biochem Physiol B Biochem Mol Biol 148:256-263. Suckow MA, Doerning BJ. 2007. Assessment of veterinary care. In: Silverman J, Suckow MA, Murthy S, eds. The IACUC Handbook, 2nd ed.. Boca Raton, FL: CRC Press. Terman M, Reme CE, Wirz-Justice A. 1991. The visual input stage of the mammalian circadian pacemaking sytem II: The effect of light and drugs on retinal function. J Biol Rhythms 6:31-48.

OCR for page 41
101 ENVIRONMENT, hOUSING, ANd MANAGEMENT Thigpen JE, Lebetkin EH, Dawes ML, Clark JL, Langley CL, Amy HL, Crawford D. 1989. A standard procedure for measuring rodent bedding particle size and dust content. Lab Anim Sci 39:60-62. Thigpen JE, Setchell KDR, Ahlmark KB, Locklear J, Spahr T, Caviness GF, Goelz MF, Haseman JK, Newbold RR, Forsythe DB. 1999. Phytoestrogen content of purified, open- and closed- formula laboratory animal diets. Lab Anim Sci 49:530-539. Thigpen JE, Setchell KDR, Saunders HE, Haseman JK, Grant MG, Forsythe DB. 2004. Selecting the appropriate rodent diet for endocrine disruptor research and testing studies. ILAR J 45:401-416. Tompkins JA, Tsai C. 1976. Survival time and lethal exposure time for the blacknose dace exposed to free chlorine and chloramines. Trans Am Fish Soc 105:313-321. Torreilles SL, Green SL. 2007. Refuge cover decreases the incidence of bite wounds in labora- tory South African clawed frogs (Xenopus laeis). JAALAS 46:33-36. Torronen R, Pelkonen K, Karenlampi S. 1989. Enzyme-inducing and cytotoxic effects of wood- based materials used as bedding for laboratory animals: Comparison by a cell culture study. Life Sci 45:559-565. Totten M. 1958. Ringtail in newborn Norway rats: A study of the effect of environmental tem- perature and humidity on incidence. J Hygiene 56:190-196. Tsai PP, Stelzer HD, Hedrich HJ, Hackbarth H. 2003. Are the effects of different enrich- ment designs on the physiology and behaviour of DBA/2 mice consistent? Lab Anim 37:314-327. Tsutsui S, Tasumi S, Suetake H, Kikuchi K, Suzuki Y. 2005. Demonstration of the mucosal lec- tins in the epithelial cells of internal and external body surface tissues in pufferfish (Fugu rubripes). Dev Comp Immun 29:243-253. Tucker HA, Petitclerc D, Zinn SA. 1984. The influence of photoperiod on body weight gain, body composition, nutrient intake and hormone secretion. J Anim Sci 59:1610-1620. Turner JG, Bauer CA, Rybak LP. 2007. Noise in animal facilities: Why it matters. JAALAS 46:10-13. Turner RJ, Held SD, Hirst JE, Billinghurst G, Wootton RJ. 1997. An immunological assessment of group-housed rabbits. Lab Anim 31:362-372. Twaddle NC, Churchwell MI, McDaniel LP, Doerge DR. 2004. Autoclave sterilization pro- duces acrylamide in rodent diets: Implications for toxicity testing. J Agric Food Chem 52:4344-4349. USDA [US Department of Agriculture]. 1985. 9 CFR 1A. (Title 9, Chapter 1, Subchapter A): Animal Welfare. Available at http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?sid=8314313bd 7adf2c9f1964e2d82a88d92andc=ecfrandtpl=/ecfrbrowse/Title09/9cfrv1_02.tpl; accessed January 14, 2010. van de Nieuwegiessen PG, Boerlage AS, Verreth JAJ, Schrama AW. 2008. Assessing the effects of a chronic stressor, stocking density, on welfare indicators of juvenile African catfish, Clarias gariepinus Burchell. Appl Anim Behav Sci 115:233-243. van den Bos R, de Cock Buning T. 1994. Social behaviour of domestic cats (Felis lybica catus L.): A study of dominance in a group of female laboratory cats. Ethology 98:14-37. Van Loo PL, Mol JA, Koolhaas JM, Van Zutphen BM, Baumans V. 2001. Modulation of aggres- sion in male mice: Influence of group size and cage size. Physiol Behav 72:675-683. Van Loo PL, Van de Weerd HA, Van Zutphen LF, Baumans V. 2004. Preference for social con- tact versus environmental enrichment in male laboratory mice. Lab Anim 38:178-188. van Praag H, Kempermann G, Gage FH. 2000. Neural consequences of environmental enrich - ment. Nat Rev Neurosci 1:191-198. Verma RK. 2002. Advances on cockroach control. Asian J Microbiol, Biotech Environ Sci 4:245-249.

OCR for page 41
102 GUIdE FOR ThE CARE ANd USE OF LAbORATORy ANIMALS Vesell ES. 1967. Induction of drug-metabolizing enzymes in liver microsomes of mice and rats by softwood bedding. Science 157:1057-1058. Vesell ES, Lang CM, White WJ, Passananti GT, Tripp SL. 1973. Hepatic drug metabolism in rats: Impairment in a dirty environment. Science 179:896-897. Vesell ES, Lang CM, White WJ, Passananti GT, Hill RN, Clemen TL, Liu DL, Johnson WD. 1976. Environmental and genetic factors affecting response of laboratory animals to drugs. Fed Proc 35:1125-1132. Vlahakis G. 1977. Possible carcinogenic effects of cedar shavings in bedding of C3H-AvyfB mice. J Natl Cancer Inst 58:149-150. Vogelweid CM. 1998. Developing emergency management plans for university laboratory animal programs and facilities. Contemp Top Lab Anim Sci 37:52-56. Waiblinger E. 2002. Comfortable quarters for gerbils in research institutions. In: Reinhardt V, Reinhardt A, eds. Comfortable Quarters for Laboratory Animals, 9th ed. Washington: Animal Welfare Institute. p 18-25. Wardrip CL, Artwohl JE, Bennett BT. 1994. A review of the role of temperature versus time in an effective cage sanitation program. Contemp Top Lab Anim Sci 33:66-68. Wardrip CL, Artwohl JE, Oswald J, Bennett BT. 2000. Verification of bacterial killing effects of cage wash time and temperature combinations using standard penicylinder methods. Contemp Top Lab Anim Sci 39:9-12. Wax TM. 1977. Effects of age, strain, and illumination intensity on activity and self-selection of light-dark schedules in mice. J Comp Physiol Psychol 91:51-62. Wedemeyer GA. 2000. Chlorination/dechlorination. In: Stickney RR, ed. Encyclopaedia of Aquaculture. Chichester: John Wiley and Sons. p 172-174. Weed JL, Watson LM. 1998. Pair housing adult owl monkeys (Aotus sp.) for environmental enrichment. Am J Primatol 45:212. Weichbrod RH, Hall JE, Simmonds RC, Cisar CF. 1986. Selecting bedding material. Lab Anim 15:25-29. Weichbrod RH, Cisar CF, Miller JG, Simmonds RC, Alvares AP, Ueng TH. 1988. Effects of cage beddings on microsomal oxidative enzymes in rat liver. Lab Anim Sci 38:296-298. Weihe WH. 1971. Behavioural thermoregulation in mice with change of cooling power of the air. Int J Biometeorol 15:356-361. Weindruch R, Walford RL. 1988. The Retardation of Aging and Disease by Dietary Restriction. Springfield, IL: Charles C Thomas. White WJ, Hawk CT, Vasbinder MA. 2008. The use of laboratory animals in toxicology re- search. In: Hays AW, ed. Principles and Methods in Toxicology, 5th ed. Boca Raton, FL: CRC Press. p 1055-1101. Williams LE, Steadman A, Kyser B. 2000. Increased cage size affects Aotus time budgets and partner distances. Am J Primatol 51(Suppl 1):98. Williams-Blangero S. 1991. Recent trends in genetic research on captive and wild nonhuman primate populations. Yearb Phys Anthropol 34:69-96. Williams-Blangero S. 1993. Research-oriented genetic management of nonhuman primate colonies. Lab Anim Sci 43:535-540. Willott JF. 2007. Factors affecting hearing in mice, rats, and other laboratory animals. JAALAS 46:23-27. Wolfensohn S. 2004. Social housing of large primates: Methodology for refinement of hus- bandry and management. Altern Lab Anim 32(Suppl 1A):149-151. Wolfer DP, Litvin O, Morf S, Nitsch RM, Lipp HP, Würbel H. 2004. Laboratory animal welfare: Cage enrichment and mouse behaviour. Nature 432:821-822. Wolff A, Rupert G. 1991. A practical assessment of a nonhuman primate exercise program. Lab Anim 20:36-39.

OCR for page 41
103 ENVIRONMENT, hOUSING, ANd MANAGEMENT Wooster GA, Bowser PR. 2007. The aerobiological pathway of a fish pathogen: Survival and disseminaton of Aeromonas salmonicida in aerosols and its implications in fish health management. J World Aquacul Soc 27:7-14. Würbel H. 2001. Ideal homes? Housing effects on rodent brain and behaviour. Trends Neurosci 24:207-211. Yanong RPE. 2003. Fish health management considerations in recirculating aquaculture sys- tems, part 2: Pathogens. IFAS, University of Florida. Available at www.aces.edu/dept/fish- eries/aquaculture/documents/fishhealth2.pdf; accessed April 15, 2010. Yildiz A, Hayirli A, Okumus Z, Kaynar O, Kisa F. 2007. Physiological profile of juvenile rats: Effects of cage size and cage density. Lab Anim 36:28-38. Young RJ. 2003. Environmental Enrichment for Captive Animals. UFAW Animal Welfare Series. London: Blackwell Science.

OCR for page 41