9
Information Technology and Systems in Home Health Care

George Demiris


Home health care faces several challenges, such as funding limitations, large geographic distances that make such resources often more costly for rural patients, and issues of clinical workforce distribution that impose access barriers to these services. It is a general premise that information technology (IT) can address these challenges and enhance home health care services. Advances in telecommunications, web solutions, and social networking tools have the potential to support health care delivery and education. The use of IT can lead to a fundamental redesign of home care processes based on the use and integration of electronic communication at all levels. Many anticipate that IT platforms may lead to patient empowerment and a transition from a passive role, in which the patient is the recipient of care services, to an active role, in which the patient is informed, has choices, and is involved in the decision-making process. Such a transition may be possible due to the active involvement of patients in the management of their disease using home monitoring devices and software, the access to information and online communities, and the use of personal health records maintained by patients themselves.

Information technology can be introduced in home care in a multitude of ways. The following taxonomy captures the multiple levels of IT function and functionality in the context of home care:

  • Active monitoring and management (requiring end-user involvement and participation)

    • Telehealth applications for home-based disease management (that link patients and their families to their health care providers)



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 173
9 Information Technology and Systems in Home Health Care George Demiris Home health care faces several challenges, such as funding limitations, large geographic distances that make such resources often more costly for rural patients, and issues of clinical workforce distribution that impose access barriers to these services. It is a general premise that information technology (IT) can address these challenges and enhance home health care services. Advances in telecommunications, web solutions, and social networking tools have the potential to support health care delivery and education. The use of IT can lead to a fundamental redesign of home care processes based on the use and integration of electronic communication at all levels. Many anticipate that IT platforms may lead to patient empower- ment and a transition from a passive role, in which the patient is the recipi- ent of care services, to an active role, in which the patient is informed, has choices, and is involved in the decision-making process. Such a transition may be possible due to the active involvement of patients in the manage- ment of their disease using home monitoring devices and software, the access to information and online communities, and the use of personal health records maintained by patients themselves. Information technology can be introduced in home care in a multitude of ways. The following taxonomy captures the multiple levels of IT function and functionality in the context of home care: • Active monitoring and management (requiring end-user involve- ment and participation) — Telehealth applications for home-based disease management (that link patients and their families to their health care providers) 1

OCR for page 173
1 HUMAN FACTORS IN HOME HEALTH CARE — Web-based communities for home care patients (that link patients and their families to health care providers, peers, and the community) — Personal health records (that enable patients to create and store their personal health information) • Passive monitoring and management (for which IT implementation does not require training or operation by the end-user) — Robotic applications (standalone artificial intelligence applica- tions that support home care needs) — “Smart homes” (in which IT based on the use of sensors becomes part of the residential infrastructure) This chapter describes these different types of IT applications and dis- cusses technical, practical, and ethical implications. TELEHEALTH APPLICATIONS FOR HOME- BASED DISEASE MANAGEMENT Telehealth applications offer a platform to support disease manage- ment for home care patients diagnosed with chronic conditions and their families. This section is organized by the disease or condition addressed by the application. For asthma management, an example of Internet utilization is the home asthma telemonitoring system (Finkelstein, O’Connor, and Friedmann, 2001), which provides patients with continuous individualized help in the daily routine of asthma self-care and coping and alerts health care pro- viders if specific conditions or patterns emerge. The system is operated by the patient or an informal caregiver (including family members or friends) and involves web-based questionnaires and the operation of a spirometer to assess lung capacity. The data sets (including the spirometry readings) are transmitted to health care providers. Another example involves diabetes. As diabetes has in many cases an asymptomatic nature, the time frame between sustained hyperglycemia and observable complications can be extended, thus making a long-term program of secondary prevention an essential part of appropriate diabetes care and a suitable domain for technology-based diabetes management applications. McKay, exploring the development and feasibility of a web tool for diabetes self-management that emphasized personalized goal set- ting, feedback, and social support (McKay et al., 1998) found that patients were satisfied with the system and appreciated the social support and the availability of information. Similarly, the Center for Health Services Research’s Henry Ford Health System in Detroit developed the web-based Diabetes Care Management

OCR for page 173
1 INFORMATION TECHNOLOGY AND SYSTEMS IN HOME HEALTH CARE Support System to support the provision of routine care to patients with diabetes (Baker et al., 2001). The system was evaluated in a nonrandom- ized, longitudinal study, and the findings indicated that web-based sys- tems using clinical practice guidelines, patient registries, and performance feedback have the potential to improve the rate of routine testing among patients with diabetes. The Telematic Management of Insulin-Dependent Diabetes Mellitus project, funded by the European Union, implemented and evaluated a dis- tributed computer-based system for the management of insulin-dependent diabetes mellitus. The goal was to use Internet technology to support health care providers and patients by providing them with a set of automated services ranging from data collection and transmission to data analysis and decision support (Riva, Bellazzi, and Stefanelli, 1997). The system included a module allowing patients to automatically download their monitoring data from the blood glucose monitoring device and to send them to the hospital information system. The system provided physicians with a set of tools for data visualization, data analysis, and decision support and allowed them to send messages, including therapeutic advice, to the patients (Bellazzi et al., 2002). Other application domains for web-based systems include congestive heart failure, chronic obstructive pulmonary disease, and wound care. The TeleHomeCare project at the University of Minnesota included a system based on the use of low-cost commercially available monitoring devices and an Internet application designed for patients diagnosed with conges- tive heart failure or chronic obstructive pulmonary disease or requiring wound care. The system included web pages customized to address the information needs of individual patients and included an online diary with questionnaires to be filled out daily. The daily questionnaire included questions about symptoms, vital signs (such as weight, blood pressure, temperature), overall well-being, and compliance with dietary guidelines. When one or more responses to these questions indicated a situation that required immediate clinical attention, alerts were triggered according to predefined rules and sent to the home care agency staff (Demiris, Speedie, and Finkelstein, 2001). Oncology patients also often face the challenges of disease manage- ment and handling treatment side-effects at home. The National Cancer Institute’s Common Terminology Criteria for Adverse Events schema for seven common symptoms was adapted into a web-based patient reporting system, accessible from desktop computers in outpatient clinics and from home computers (Basch et al., 2005). In this study, 80 patients with gyne- cological malignancies, about to begin standard chemotherapy regimens, were enrolled and encouraged to log into the system and report symptoms at each follow-up visit or, alternatively, to access the system from home.

OCR for page 173
1 HUMAN FACTORS IN HOME HEALTH CARE Numerous toxicities (grades 3 to 4) reported from home prompted clinician interventions. Patients were capable of reporting symptoms experienced during chemotherapy, and their reporting often led to clinical interventions and changes in the care plan—indicating that the use of the Internet can be beneficial for the treatment and monitoring of home patients diagnosed with cancer (Basch et al., 2005). Finally, care following organ transplant requires an ongoing monitoring of the patient’s health status as well as the patient’s active involvement in this process. Regular spirometry monitoring of lung transplant recipients, for example, is essential to early detection of acute infection and rejection of the allograft. A prospective study investigated the impact of a web-based telemonitoring system providing direct transmission of home spirometry to the hospital. The study demonstrated that home monitoring of pulmo- nary function in lung transplant recipients via the Internet is feasible and provides very reproducible data, yet “it has only a mild sensitivity for the detection of acute allograft dysfunction” (Morlion et al., 2002). As the use of telehealth technologies emerged in the area of home care, most of the earlier studies were either pilot exploratory projects or clinical trials with small sample sizes. One of the earliest clinical trials in the area of telehealth in home care (also referred to as telehomecare) with a large sample size was a study by Johnston and colleagues (2000). This was a quasi-experimental study in which newly referred patients diagnosed as having congestive heart failure, chronic obstructive pulmonary disease, cerebral vascular accident, cancer, diabetes, anxiety, or need for wound care were randomly assigned to either routine home care or a remote video system with peripheral monitoring devices that also allowed nurses and patients to interact in real time. A total of 102 subjects were enrolled in the experimental group and 110 in the control group. The study findings demonstrated no differences in the quality indicators (medication compli- ance, knowledge of disease, and ability for self-care) or patient satisfaction. Although the average direct cost for home health services was $1,830 in the intervention group and $1,167 in the control group, the total mean costs of care, excluding home health care costs, were $1,948 in the intervention group and $2,674 in the control group. An extensive recently completed randomized clinical trial of tele- homecare, and currently the largest telehomecare randomized study reported in scientific literature, is the Informatics for Diabetes Education and Telemedicine study (Shea et al., 2009). This project compared tele- homecare case management with usual care of older, ethnically diverse, medically underserved Medicare beneficiaries with diabetes mellitus residing in medically underserved areas of New York State. The sample included 1,665 Medicare recipients with diabetes, age 55 or older. Find- ings demonstrate that telehomecare case management resulted in net

OCR for page 173
1 INFORMATION TECHNOLOGY AND SYSTEMS IN HOME HEALTH CARE improvements in blood glucose, cholesterol, and blood pressure levels over 5 years. Another large (although not randomized) study of home telehealth, car- ried out by the Veterans Health Administration, introduced a national home telehealth program called Care Coordination/Home Telehealth (Darkins et al., 2008). The purpose of this ongoing initiative is to coordinate the care of veteran patients with chronic conditions in order to avoid or reduce unnecessary admission to long-term institutional care. Routine analysis of data from a cohort of 17,025 patients in 2008 shows the benefits of a 25 percent reduction in number of bed days of care, a 19 percent reduc- tion in number of hospital admissions, and overall high satisfaction rates for patients enrolled in the program (Darkins et al., 2008). The cost of the program was estimated to be $1,600 per patient per year in 2008, which the authors argue is substantially less than other noninstitutional care programs or nursing home care (Darkins et al., 2008). Rojas and Gagnon conducted a systematic review of the key indicators for assessing telehomecare cost-effectiveness (Rojas and Gagnon, 2008). Their analysis showed that there is fair evidence of cost-effectiveness for many telehomecare applications. However, the heterogeneity among cost- effectiveness indicators in the applications reviewed and the methodological limitations of the studies impede the generalizability of the findings. These telehealth applications require operation by the patients or their families (including use of a web interface and, in most cases, operation of a monitoring device, such as a glucose reader, a blood pressure cuff, or a spirometer). This obviously has implications for eligibility criteria, as train- ing is often required for patients or families before they can operate the system (requiring the presence and involvement of an informal caregiver when the patient has cognitive or functional limitations). An additional implication for the health care provider at the other end, who receives the collected data sets and, in some cases, conducts videoconference-based consultations, pertains to the training of providers as well as the need for technical support when technical problems arise at either end. WEB-BASED COMMuNITIES FOR HOME CARE PATIENTS In addition to web-based applications that follow an institution-centric approach and link home care patients to health care providers, the Inter- net also supports a consumer-centric model and enables the creation of networks between home care patients diagnosed with the same condition, families or other informal caregivers, communities, and the general public. Such networks are often referred to as virtual communities. A virtual com- munity is a social entity involving several individuals who relate to one another by the use of a specific communication technology that bridges

OCR for page 173
18 HUMAN FACTORS IN HOME HEALTH CARE geographic distance (Demiris, 2005). While traditional communities are determined by such factors as geographic proximity, organizational struc- tures, or activities shared by the members of the community, the label “virtual” declares properties that, unlike these of a traditional community, are based on the use of advanced technologies that support interactions and exchange of information between members who may never physically meet (Demiris, 2005). Virtual communities demonstrate core attributes wherein members have a shared goal, interest, need, or activity that is the primary reason for being part of the community. They engage in repeated, active par- ticipation with access to shared resources. Defined policies determine the type and frequency of access to those resources. The sustainability of the community relies on reciprocity of information, support, and services among members (Whittaker, Isaacs, and O’Day, 1997). A virtual com- munity with a health care purpose or focus is a group of people, as well as the social structure that they collectively create, based on the use of telecommunication with the purposes of educating, providing support, discussing issues, sharing resources, consulting with experts, and sustain- ing relationships beyond or without face-to-face events. Numerous such applications function as self-help groups of individuals diagnosed with the same clinical condition or undergoing similar treatment. As Finn (1999) demonstrated, virtual self-help groups can provide many of the processes used in face-to-face self-help and mutual aid groups. The emphasis in such virtual communities is on mutual problem solving, information sharing, expression of feelings, mutual support, and empathy. Technologies for virtual communities include, among others, online message boards and automatic mailing list servers for asynchronous com- munication, videoconferencing, Internet relay chat, group and private chat rooms for synchronous communication, and even social networking plat- forms, such as Facebook or Twitter. In some cases, communication is not “moderated”; that is, there is no entity responsible for reviewing and filter- ing posts that are thought to be inappropriate or in violation of any of the rules and terms of the virtual community. In these cases, the community relies largely on the normative processes of its own internal social norms “to define and enforce the acceptable behavior of the community members” (Burnett, Besant, and Chatman, 2001). In other cases, a moderator or group of moderators oversees and facilitates the interaction among members. In a systematic review of online health care communities in 2004 (Eysenbach et al., 2004), researchers compiled and evaluated the evidence on the effects on health and social outcomes of computer-based peer-to-peer communities and electronic support groups. The authors identified a lack of robust evidence of the effectiveness of consumer-led peer-to-peer communi- ties, partly because most of these communities have been evaluated only in

OCR for page 173
1 INFORMATION TECHNOLOGY AND SYSTEMS IN HOME HEALTH CARE conjunction with more complex interventions or involvement with health professionals (Eysenbach et al., 2004). However, given the great number of unmoderated web-based peer-to-peer groups, further research is needed to assess when and how electronic support groups can be effective (Eysenbach et al., 2004). Virtual communities can involve patients, family members, informal caregivers, and even researchers. The Comprehensive Health Enhancement Support System (CHESS), developed by the University of Wisconsin, is a platform that provides services designed to help individuals cope with a health crisis or medical concern, but it also invites researchers to use resources and share knowledge and findings (Gustafson et al., 1992). The system provides timely access to such resources as information, social sup- port, and decision-making and problem-solving tools when needed most. This application and its modules and consortia are good examples of a virtual community that serves individual patients’ and caregiver needs while also providing an active laboratory for researchers and organizations (Gustafson et al., 1992). The same advanced telecommunication technologies that can facilitate virtual communities of patients and their families can also enable health care providers to form virtual teams, interacting and collaborating on cases even when separated by large geographic distances. Numerous health care settings lack the interdisciplinary resources required for efficient chronic disease management. Clinicians and researchers at Rush University Medical Center in Chicago developed the Virtual Integrated Practice, a process that creates virtual care teams (Rothschild et al., 2004) that target four strate- gies: (1) communications, (2) process standardization, (3) group activities, and (4) self-management. The conditions covered are diabetes, chronic obstructive pulmonary disease, and urinary incontinence. Communication among members of the virtual team is both synchronous and asynchronous. Virtual health care provider teams in general can ensure continuity of care as they use a common platform for exchange of messages, opinions, and resources. Such teams can be essential to successful disease management and to providing continuity of care for the patients. PERSONAL HEALTH RECORDS A concept emerging from the proliferation of web technologies in people’s homes is the personal health record (PHR). The National Alliance for Health Information Technology defines a personal health record as “an individual’s electronic record of health-related information that con- forms to nationally recognized interoperability standards and that can be drawn from multiple sources while being managed, shared and controlled by the individual” (National Alliance for Health Information Technology,

OCR for page 173
180 HUMAN FACTORS IN HOME HEALTH CARE 2008). Specifically, a personal health record is a tool to use in “sharing health information, increasing health understanding and helping transform patients into better-educated consumers of health care” (Kahn, Aulakh, and Bosworth, 2009). A recent initiative to implement a PHR system was launched in the Vet- erans Health Administration system (U.S. Department of Veterans Affairs, 2010). Called MyHealtheVet, this system focuses at the moment primarily on appointments, medication requests, protecting the identity of the users, and helping veterans obtain a variety of services. The electronic medical record software vendor, Epic, has also introduced a PHR application currently used by Kaiser Permanente, the Cambridge Health Alliance, and others. These systems are widely used by consumers because they provide important func- tionality, which could lead to improved health (Mechanic, 2008). The PHR concept is expected to enable a shift from institution-centric to patient-centric models of care as personal health records can be used for sharing such health information as health finances, diagnoses (problem lists), allergies, immunizations, insurance information, and medications in an easy way that helps people manage their own health (Hassol et al., 2004). In that context, it is the patient and not a health care facility who owns and controls his or her data. For that reason, the industry is showing a growing interest in PHR applications. Such applications intro- duced recently by Google (Google Health) and Microsoft (HealthVault) can potentially enable consumers to gain access to their health information via the Internet without having to use special hardware or have organizational agreements in place. Traditional electronic medical record (EMR) systems are controlled and maintained by health care providers, whereas a PHR system is controlled and maintained by the patient. The integration of EMR and PHR systems is envisioned to enable a synergistic model in which PHR data can aug- ment EMR data, allowing for a holistic and collaborative model of care and shared decision making; however, this is not yet a reality. This goal requires addressing several challenges, including technical issues (enabling patient control and authentication, synchronization of records, data encryp- tion, diffusion of interoperability standards), sociotechnical issues (e.g., providers needing to develop trust in PHR data, consumers called on to assume a more active role in the health care delivery process), changes in health care providers’ workflow, and education of both consumers and providers, as well as legal and regulatory challenges. PHR systems potentially can be used in combination with telehealth or other web-based applications, allowing patients to store and process their own data resulting from disease management efforts or communication with health care providers. PHR systems can therefore also be used for disease prevention and wellness promotion, in which consumers who are

OCR for page 173
181 INFORMATION TECHNOLOGY AND SYSTEMS IN HOME HEALTH CARE not necessarily labeled as patients (as they may not have a clinical condi- tion) can manage their lifestyle choices, plans, finances, encounters with the health care system, etc. With their potential to empower consumers and place the patient at the center of decision making and management of his or her own health, PHR tools may in the near future significantly affect home care. ROBOTIC APPLICATIONS Robotic applications using artificial intelligence principles and, in some cases, with anthropomorphic features have traditionally been used in the clinical setting, mostly in an experimental mode (e.g., robotic-assisted sur- gery, including robotic-assisted laparoscopic pyeloplasty, cystectomy, etc.) However, technology advances have introduced robotic applications into the home to address cognitive, functional, and psychological issues. The Robot/CAMR suite by Johnson and colleagues (2007) includes a robotic application with a conventional force-reflecting joystick, a modified joystick therapy platform, and a steering wheel platform with embedded software to provide extrinsic motivation and outcome assessment for stroke rehabilitation home care patients. Recent reports from a number of laborato- ries using enhanced sensorimotor training protocols, particularly those with robotic devices, have indicated modest success in reducing impairment and increasing motor power in the exercised limb of patients with stroke when compared with control individuals (Volpe, Krebs, and Hogan, 2001). The Nursebot project, led by the University of Pittsburgh and Carnegie Mellon University (Montemerlo et al., 2002), focuses on a robot as a platform for intelligent reminding (including reminders of medication or upcoming appointments), telepresence (connecting providers with patients via video), surveillance (to detect emergencies), mobile manipulation (which integrates robotic strength with a person’s senses and intellect), and social interaction (with the robot that can take over certain social functions) for older home care patients. The use of robotic pets has been explored in long-term care facilities, where residents often experience social isolation and loneliness. Banks, Willoughby, and Banks (2008) explored the use of a robotic dog as part of animal-assisted therapy to treat loneliness and compared it with the use of actual living dogs that are in many cases not allowed in these facilities. Findings indicated that the two groups were comparable in terms of out- comes (both groups had statistically significant and comparable improve- ments in residents’ levels of loneliness). Another robotic application that has been tested in different settings is Paro (Wada and Shibata, 2007), a therapeutic robot baby harp seal that has been designed to create a calming effect on, and elicit emotional responses

OCR for page 173
182 HUMAN FACTORS IN HOME HEALTH CARE among, older adults and their caregivers. The robotic application has five kinds of sensors: (1) tactile, (2) light, (3) audition, (4) temperature, and (5) posture sensors, with which it can perceive its environment and people in it. It can recognize light and dark with the light sensor, being stroked and beaten with the tactile sensor, or being held with the posture sensor. Finally, it recognizes the direction of voices and words, such as its name, greetings, and praise with its audio sensor. The system has been tested with encourag- ing findings for its sociopsychological and physiological influences on older people and their caregivers in homes and assisted living facilities and for both healthy elders and elders with dementia. SMART HOMES A “smart home” is a residence equipped with technology installed as an integral part of the infrastructure to facilitate monitoring of residents, or promote independence, and increase residents’ quality of life (Demiris, 2008). The technology does not require training of or operation by the resident, thereby distinguishing smart home applications from standalone units that can be used in the home setting and need to be operated by the end-user (e.g., blood pressure cuffs, videophones) or software applications that require end-user initiation and training. As technology advances, smart home applications are being developed worldwide. The Center for Future Health at the University of Rochester, for example, has developed a Smart Medical Home as a highly controlled environment that includes infrared sensors, biosensors, and video cameras (Marsh, 2002). The Aware Home at the Georgia Institute of Technology explores ubiquitous computing technologies that sense and identify poten- tial crises, assist a senior adult’s memory, and track behavioral trends (Kidd et al., 1999). Researchers from five countries (Finland, Ireland, Lithuania, Norway, and the United Kingdom) joined their efforts for the ENABLE project (Cash, 2003), which promotes the well-being of people with early dementia with several features, such as a locator for lost objects, a tem- perature monitor, and an automatic bedroom light. In Toulouse, France, the PROSAFE project is using a set of infrared motion sensors to support automatic recognition of resident activity and of possible falls (Chan et al., 1999). Hayes evaluated the use of continuous, long-term in-home monitoring to assess neurological function in healthy and cognitively impaired elders (Hayes et al., 2008). A total of 14 older adults (ages 65 and older) living independently in the community were monitored in their homes by using an unobtrusive sensor system that enabled assessment of walking speed and level of activity. Findings demonstrate the feasibility of this approach and also suggest clear potential advantages to this methodology over conven-

OCR for page 173
18 INFORMATION TECHNOLOGY AND SYSTEMS IN HOME HEALTH CARE tional episodic testing in a clinic environment. A sensor system was also used to address the challenges of medication adherence. In another study (Hayes et al., 2009), a context-aware reminder system, which generated reminders at an opportune time to take medication, was evaluated with 10 participants age 65 or older, living alone and managing their own medica- tions. Adherence and activity in the home were measured using a system of sensors, including an instrumented pillbox. The study indicates that context-aware prompting may provide improved adherence over standard time-based reminders. A systematic review of smart home projects identified 114 publications for 21 distinct ongoing smart home projects and initiatives (Demiris and Hensel, 2008). The majority of these projects address safety monitoring and assistance (e.g., use of heat sensors detect environmental hazards, such as fire or gas leaks, and safety features, such as automatically turning on bathroom lights when the resident gets out of bed), security monitoring and assistance (e.g., use of motion sensors that detect intruders), cogni- tive and sensory assistance (e.g., automated or self-initiated reminders, cognitive aids, such as lost key locators, and technologies that aid users with sensory deficits in vision, hearing, and touch), and overall wellness (e.g., combination of motion sensors, pressure pads, and gait monitors to assess activity levels, use of bed sensors to assess sleep quality). In spite of the growing number of initiatives in this area, the field is in relatively early stages, focusing on feasibility testing and currently lacking an extensive body of evidence of clinical effectiveness. Most of the identified studies demonstrate the feasibility of the technological solution or describe preliminary evaluation approaches with a limited number of subjects, most commonly in a laboratory setting; only a few present results of testing in actual homes or communities (Elite Care, 2005; Demiris et al., 2006; Rialle et al., 2006). HuMAN FACTORS CHALLENGES AND CONSIDERATIONS The use of technology applications and tools in home health care raises a number of issues that human factors expertise is called on to address. The sections below address the issues of privacy and confidentiality; usability; data transmission and interoperability; and policy, economic, and ethical considerations. Privacy and Confidentiality Systems that use the Internet or other means to transmit and exchange clinical data call for an examination of how privacy and confidentiality with regard to individuals’ health information are protected. Information

OCR for page 173
10 HUMAN FACTORS IN HOME HEALTH CARE Polisena et al. (2009) developed a framework for the conduct of eco- nomic evaluation of home telehealth projects for patients with chronic conditions, calling for the assessment of incremental costs and incremen- tal outcomes of each health care program evaluated. They argue that the majority of published studies are not economic evaluations of home telehealth and cannot assist in determining whether a treatment is justifi- able based on the impact on costs and treatment outcomes; often studies interpret a reduced use of health care resources as evidence of improved outcomes (Polisena et al., 2009). Use of health care resources use may be limited, however, due to fewer contacts with home telehealth, meaning reduced frequency of access to other services but not necessarily a reduced need for these services. This highlights the significance of inclusion of clinical outcomes (which may be surrogate outcomes, such as disease markers or patient’s quality of life) in economic evaluations. Introducing technology into the residential setting may initially increase overall costs (by adding costs of software/ hardware, training, installation, and maintenance). In these cases, a cost- effectiveness, or cost-utility analysis, can highlight the potential long-term impact of the IT-based application. A cost-effectiveness analysis needs to include data on clinical outcomes associated with the particular disease or condition studied, such as event rates and deaths. Often it is the case that an economic evaluation takes place within a limited time frame that does not facilitate a demonstration of differences in long-term clinical outcomes, as would be the case with longitudinal studies. In these cases, and especially when studying populations with chronic diseases, surrogate markers (such as glycemic control for diabetes, systolic blood pressure for congestive heart failure) can be used to address clinical outcomes. An economic evaluation should include a sensitivity analysis to determine the robustness of the study findings based on the assumptions made (and by varying the underlying assumptions over a range of possible values). A systematic review of economic evaluations for home telehealth identi- fied a total of 22 studies on home telehealth for chronic diseases published between 1998 and 2008 (Polisena et al., 2009). Home telehealth was found to have cost savings from the health care system and insurance provider perspectives in all but two studies, but, the authors argue, the quality of the studies was generally not high. Current evidence suggests that home tele- health has the potential to reduce costs, but its impact from a societal per- spective remains uncertain until higher quality studies become available. Ethical Considerations When a system allows stakeholders of health care delivery services to interact while separated by distance, the issue of what has been called “pro-

OCR for page 173
11 INFORMATION TECHNOLOGY AND SYSTEMS IN HOME HEALTH CARE gressive dehumanization” of interpersonal relationships is raised, namely, the conduct not only of the professional but also of the interpersonal aspect of communication online or via communication technologies with a decreasing number of face-to-face interactions. IT-based home care inter- ventions have the potential to bridge geographic distances and in some cases allow for anonymity that might be desired for a specific medical condition; however, such applications might be lacking the sense of touch and inter- human close contact that occurs in face-to-face meetings. Virtual com- munities represent a physically disembodied social order, and some argue (Winner, 1990) that it will eventually compete with a structure or network of entities that occupy spatial locations. In this context, the argument is that “the fabric of human relationships and communities rests on real pres- ences, real physical meetings and relationships” (Horner, 2001), and their elimination may affect the patient-provider relationship and perhaps even the traditional dimensions of home care. A theoretical framework for the definition of obtrusiveness in home telehealth technologies was developed by Hensel, Demiris, and Courtney (2006). In this framework, obtrusiveness pertains to the features of infor- mation technology that may be perceived as prominently undesirable by an individual user. In all, 22 categories of what may be perceived as obtru- siveness were identified on the basis of a review of the literature and were grouped into 8 dimensions (including, among others, the physical dimen- sion, privacy, usability, human interaction). This effort represents an initial step toward developing measures of obtrusiveness associated with infor- mation technology applications in home care and a tool to systematically address ethical considerations involved in such applications. DISCuSSION This review highlights the diversity of technology applications and tools in home health care and the promising role they can play for a variety of stakeholders (including patients, families, health care providers, communi- ties, and the general public) and for a multitude of clinical areas (covering physiological, functional, cognitive, social, and psychological parameters as well as holistic aspects of wellness and quality of life). The clear advantages that IT integration in home care carries include the introduction of several stakeholders who can more easily and efficiently communicate in spite of geographic distance and the ability to generate new types of data (e.g., activity levels, sleep quality) and more frequently collect well-established parameters (such as vital signs) without requiring the actual presence of health care providers in the residential setting.

OCR for page 173
12 HUMAN FACTORS IN HOME HEALTH CARE The use of IT: Shared Decision Making and Patient Empowerment One of the expectations resulting from the use of IT in home health care is that it will empower patients and their families by providing them with access to information, peers, and other networks and by actively engaging them in the disease management or wellness promotion initia- tives. The empirical evidence that involvement in healthcare decisions makes a significant and enduring difference to health care outcomes is not unequivocal (Savage and Armstrong, 1990; Stewart, 1995; Kinmonth et al., 1998), although some studies support this hypothesis. One difficulty (among many) is that the involvement of patients in decisions has been left undefined. It is usually conceptualized as patient-centeredness (Roter, 1989; Stewart et al., 1995), which is a broad and variably interpreted concept that is difficult to assess using current tools (Mead and Bower, 2000a, 2000b). Nevertheless, the ethical need to respect autonomy and respond to home care patients’ desire for more involvement in decision making is becoming widely recognized (Richards, 1998; Coulter, Entwistle, and Gilbert, 1999). A treatment decision-making framework based on information exchange, deliberation about treatment options, and agreement on the treatment to implement has been developed by Charles and colleagues (2003). In this framework, three approaches are presented to label the process and outcome of decision making: 1. The pure paternalistic approach is characterized by health care provider control, whereby the provider determines the amount and kind of information that is given to the patient. The information flow is unidirectional. The provider deliberates about the ben- efits and risks of available options and reaches a decision without patient input (Charles et al., 2003). 2. The pure informed approach is characterized by a division of labor and the preservation of patient autonomy. The provider makes available to the patient information on treatment options, chal- lenges, and risks. The patient assesses the situation in the context of her or his own value system and preferences and makes a treatment decision. 3. The pure shared approach is characterized by ongoing interac- tion and information exchange between patient and provider in all stages of the decision-making process. The information flow is bidirectional. The provider offers information about all available options and risks, and the patient discusses personal preferences, his or her value system, lifestyle, and personal preferences. The decision-making process includes an extensive discussion and nego-

OCR for page 173
1 INFORMATION TECHNOLOGY AND SYSTEMS IN HOME HEALTH CARE tiations in search of the best option to pursue. The decision-making process is a dynamic one in which both providers and patients may shift away from their initial position (Charles et al., 2003). Shared decision making is increasingly advocated as an ideal model of decision making about treatment in the clinical encounter in general and in home care specifically. In the shared model, the process by which the inter- action is conducted to reach an agreement may be determined at the outset of the encounter or may develop as the encounter unfolds and be shaped dynamically by the ongoing communication. Information sharing is a pre- requisite to shared decision making. It is a challenge to expect all patients to enroll in this process as equal partners, as one may argue that there may often be a power imbalance in the provider-patient relationship. Obviously health care providers have superior knowledge of the options and issues involved, as well as clinical experience, and therefore join the process as experts (Charles, Gafni, and Whelan, 1999). A patient may often participate in the encounter feeling vulnerable due to their illness or fear of the unknown. Additional issues, such as health literacy, income, gender, and cultural barriers, may impede patients and prevent them from expressing their preferences or negotiating with the physician (Charles et al., 1999). As Guadagnoli and Ward point out, it is a challenge for providers who want to practice a shared approach to provide a safe environment for patients, allowing them to be comfortable in exploring information and negotiating options (Guadagnoli and Ward, 1998). The use of information technology (and personal health records specifically) can increase access to information for patients and provide them with options as well as tools to capture their health behaviors and their needs. However, it remains to be explored whether IT use in home health care can indeed support shared decision making and ultimately lead to patient empowerment. Future Trends As technology advances, rapid developments in the areas of robotic applications and smart homes are anticipated. Currently, research is under way in Japan to explore the role of humanoids in home health care and nursing homes. The term “humanoid” describes a robotic application with artificial intelligence features that is anthropomorphic. Japan’s aging popu- lation has ignited efforts to design fully functional robots that can aid elders in their homes or long-term care facilities and address the nursing workforce shortage. While such developments may not be fully explored in the immediate future but may become long-term trends, there are developments that are

OCR for page 173
1 HUMAN FACTORS IN HOME HEALTH CARE anticipated to affect the use of IT in home health care in the very near future. These include Web 2.0 and the proliferation of wireless communications. Web 2.0 refers to web development and web design that facilitates interactive information sharing, interoperability, and collaboration. A Web 2.0 site allows its users to interact with other users or to change website content, in contrast to noninteractive websites that limit users to the pas- sive viewing of the information provided. Examples of Web 2.0 include web-based communities, social networking sites, and video-sharing sites. The concept of Web 2.0 enables virtual community tools and PHR appli- cations, as well as new and innovative ways for different stakeholders to communicate and collaborate. Wireless handheld computers and cell phones with expanded comput- ing abilities are widely used and continue their diffusion in the U.S. popu- lation. Smart phones and other similar devices can play a role in home care, whether as tools to record daily activities (e.g., nutrition, exercise), to provide reminders, or for even more sophisticated services (e.g., use of global positioning systems to identify health care providers and facilities, built-in sensors to assess amount and type of physical activity and compare with predefined goals). unintended Consequences As is the case with any IT implementation, when exploring options for new and innovative technologies in home health care, one has to predict or prepare for unintended consequences. As new systems are implemented to enhance home care services, one needs to address the possibility of such technologies removing choice and control from users as they learn to rely on automation. There are fears that sophisticated applications, like robotic tools or smart homes, may result in a reduction of social interac- tion, or that they may provide tools that substitute for personal forms of care and communication (Tetley, Hanson, and Clarke, 2001). Since the technologies are introduced into one’s home, the warning by Wylde and Valins (1996) against creating “societies of high-tech hermits” becomes even more relevant. In addition, the degree to which automated applications lessen the sense of personal responsibility on the part of users or their caregivers must be weighed against associated benefits. Informal caregivers may become less vigilant in monitoring health changes in their loved ones, and the patients themselves may become less vigilant in health self-monitoring or self-management. Further research and dialogue need to address eligibility criteria and user characteristics or clinical conditions that may be more suitable for IT applications in home care. Which populations may benefit the most from telehealth or smart home applications? When do the require-

OCR for page 173
1 INFORMATION TECHNOLOGY AND SYSTEMS IN HOME HEALTH CARE ments for infrastructure and training outweigh anticipated benefits? As Stip and Rialle point out (2005), the issues of individual freedom, personal autonomy, informed consent, and confidentiality have to be examined in the context of the target population. They use an example of an IT appli- cation for patients with schizophrenia, a condition that causes distortion of reality, often in the form of delusions of persecution and psychosensory phenomena, and highlight the likelihood that surveillance technologies may exacerbate such symptoms. It becomes clear that technology toolkits should be developed and used when appropriate and should demonstrate flexibility to address the profile of every user, including not only clinical (physiologi- cal, functional, cognitive) but also psychological and social parameters. ABOuT THE AuTHOR George Demiris is associate professor of biobehavioral nursing and health systems in the School of Nursing and Biomedical and Health Infor- matics, School of Medicine, at the University of Washington. His research interests include the design and evaluation of home-based technologies for older adults and patients with chronic conditions and disabilities, smart homes and ambient assisted living applications, and the use of telehealth in home care and hospice. REFERENCES Aditya, B.S., Sharma, J.C., Allen, S.C., and Vassallo, M. (2003). Predictors of a nursing home placement from a non-acute geriatric hospital. Clinical Rehabilitation, 1(1), 108-113. Arsand, E., and Demiris, G. (2008). User centered methods for designing patient-centric self- help tools. Informatics for Health and Social Care, , 158-169. Baker, A.M., Lafata, J.E., Ward, R.E., Whitehouse, F., and Divine, G. (2001). A web-based dia- betes care management support system. Joint Commission Journal on Quality Improe- ment, 2(4), 179-190. Banks, M.R., Willoughby, L.M., and Banks, W.A. (2008). Animal-assisted therapy and loneli- ness in nursing homes: Use of robotic versus living dogs. Journal of the American Medical Directors Association, (3), 173-177. Basch, E., Artz, D., Dulko, D., Scher, K., Sabbatini, P., Hensley, M., et al. (2005). Patient online self-reporting of toxicity symptoms during chemotherapy. Journal of Clinical Oncology, 2(15), 3,552-3,561. Bellazzi, R., Larizza, C., Montani, S., Riva, A., Stefanelli, M., d’Annunzio, G., et al. (2002). A telemedicine support for diabetes management: the T-IDDM project. Computer Methods and Programs in Biomedicine, (2), 147-161. Burnett, G., Besant, M., and Chatman, E.A. (2001). Small worlds: Normative behavior in virtual communities and feminist bookselling. Journal of the American Society for Infor- mation Science and Technology, 2, 536-547. Cash, M. (2003). Assistive technology and people with dementia. Reiews in Clinical Gerontology, 1, 313-319.

OCR for page 173
1 HUMAN FACTORS IN HOME HEALTH CARE Center for Devices and Radiological Health, Food and Drug Administration. (1996). Tele- health related actiities. Available: http://www.fda.gov/AboutFDA/CentersOffices/ CDRH/DivisionofCommunicationMediaFDATVStudio/ucm125788.htm [accessed Au- gust 2010]. Chan, M., Bocquet, H., Campo, E., Val, T., and Pous, J. (1999). Alarm communication net- work to help carers of the elderly for safety purposes: A survey of a project. International Journal of Rehabilitation Research, 22, 131-136. Charles, C.A., Gafni, A., and Whelan, T. (1999). Decision-making in the physician-patient encounter: Revisiting the shared treatment decision making model. Social Science and Medicine, , 651-661. Charles, C.A., Whelan, T., Gafni, A., Willan, A., and Farrell, S. (2003). Shared treatment decision making: What does it mean to physicians? Journal of Clinical Ontology, 21, 932-936. Continua Health Alliance. (2010). About the Alliance. Available: http://www.continuaalliance. org/about-the-alliance.html [accessed June 2010]. Coulter, A., Entwistle, V., and Gilbert, D. (1999). Sharing decisions with patients: Is the infor- mation good enough? British Medical Journal, 18, 318-322. Darkins, A., Ryan, P., Kobb, R., Foster, L., Edmonson, E., Wakefield, B., and Lancaster, A.E. (2008). Care coordination/home telehealth: The systematic implementation of health infor- matics, home telehealth, and disease management to support the care of veteran patients with chronic conditions. Telemedicine Journal and E-Health, 1(10), 1,118-1,126. Demiris, G. (2005). Virtual communities in health care. In B. Silverman, A. Jain, A. Ichalkaranje, and L. Jain (Eds.), Intelligent paradigms for healthcare enterprises (vol. 184, pp. 121-137). New York: Springer Verlag. Demiris, G. (2008). Smart homes and ambient assisted living in an aging society: New oppor- tunities and challenges for biomedical informatics. Methods of Information in Medicine, (1), 56-57. Demiris, G., and Hensel, B.K. (2008). Technologies for an aging society: A systematic review of “smart home” applications. Yearbook of Medical Informatics, 33-40. Demiris, G., Finkelstein, S.M., and Speedie, S.M. (2001). Considerations for the design of a web-based clinical monitoring and educational system for elderly patients. Journal of the American Medical Informatics Association, 8, 468-472. Demiris, G., Skubic, M., Keller, J., Rantz, M., Parker Oliver, D., Aud, M., Lee, J., Burks, K., and Green, N. (2006). Nurse participation in the design of user interfaces for a smart home system. In Proceedings of the International Conference on Smart Homes and Health Telematics (pp. 66-73), Belfast, Northern Ireland. Amsterdam, the Netherlands: IOS Press. Demiris, G., Speedie, S.M., and Finkelstein, S. (2001). Change of patients’ perceptions of telehomecare. Telemedicine Journal and E-Health, (3), 241-248. Electronic Industries Alliance and the Electronic Industries Foundation. (1996). Resource guide for accessible design of consumer electronics: Linking product design to the needs of people with functional limitations. A joint venture of the Electronic Industries Alliance and the Electronic Industries Foundation. Arlington, VA: Telecommunications Industry Association. Elite Care. (2005). Creating an autonomy-risk equilibrium (CARE). Available: http://legacy. lclark.edu/~moss/oatfield%20page.html [accessed May 2010]. Eysenbach, G., Powell, J., Englesakis, M., Rizo, C., and Stern, A. (2004). Health-related vir- tual communities and electronic support groups: Systematic review of the effects of online peer to peer interactions. British Medical Journal, 28(7449), 1,166.

OCR for page 173
1 INFORMATION TECHNOLOGY AND SYSTEMS IN HOME HEALTH CARE Finkelstein, J., O’Connor, G., and Friedmann, R.H. (2001). Development and implementation of the home asthma telemonitoring (HAT) system to facilitate asthma self-care. Studies in Health Technology and Informatics, 8(Pt 1), 810-814. Finn, J. (1999). An exploration of helping processes in an online self-help group focusing on issues of disability. Health and Social Work, 2(3), 220-231. Goossen, W.T.F. (2003). Templates: An organizing framework to link evidence, terminology and information models in the nursing profession. In Proceedings of the Eighth Interna- tional Congress in Nursing Informatics, Rio de Janeiro, Brazil. Guadagnoli, E., and Ward, P. (1998). Patient satisfaction in decision making. Social Science and Medicine, , 329-339. Gustafson, D.H., Bosworth, K., Hawkins, R.P., Boberg, E.W., and Bricker, E. (1992). CHESS: A computer-based system for providing information, referrals, decision support and social support to people facing medical and other health-related crises. In Proceedings of the Annual Symposium on Computer Application in Medical Care (pp. 161-165). Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2248029/pdf/procascamc00003-0178.pdf [accessed June 2010]. Hallowell, N., Foster, C., Eeles, R., Ardern-Jones, A., Murday, V., and Watson, M. (2003). Balancing autonomy and responsibility: The ethics of generating and disclosing genetic information. Journal of Medical Ethics, 2, 74-79. Harris, S.B., Gottlieb, B.L., and Weiner, S. (2005). Regulating broadband. Communications Lawyer, 2, 1-10. Hassol, A., Walker, J.M., Kidder, D., Rokita, K., Young, D., Pierdon, S., Deitz, D., Kuck, S., and Ortiz, E. (2004). Patient experiences and attitudes about access to a patient elec- tronic health care record and linked web messaging. Journal of the American Medical Informatics Association, 11(6), 505-513. Hayes, T.L., Abendroth, F., Adami, A., Pavel, M., Zitzelberger, T.A., and Kaye, J.A. (2008). Unobtrusive assessment of activity patterns associated with mild cognitive impairment. Alzheimer’s and Dementia, , 395-405. Hayes, T.L., Cobbinah, K., Dishongh, T., Kaye, J.A., Kimel, J., Labhard, M., et al. (2009). A study of medication-taking and unobtrusive, intelligent reminding. Telemedicine Journal and E-Health 1, 770-776. Hensel, B.K., Demiris, G., and Courtney, K.L. (2006). Defining obtrusiveness in home tele- health technologies: A conceptual framework. Journal of the American Medical Infor- matics Association, 1, 428-431. Horner, D.S. (2001). The moral status of virtual action. In T.W. Bynum (Ed.), Proceedings of the Fifth International Conference on the Social and Ethical Impacts of Information and Communication Technologies (vol. 2, pp. 226-235). Gdansk, Poland: Technical University of Gdansk: Ethicomp. Hyler, S.E., and Gangure, D.P. (2004). Practitioner’s corner: Legal and ethical challenges in telepsychiatry. Journal of Psychiatric Practice, 10, 272-276. Johnson, M.J., Feng, X., Johnson, L.M., and Winters, J.M. (2007). Potential of a suite of robot/computer-assisted motivating systems for personalized, home-based, stroke rehabilitation. Journal of Neuroengineering and Rehabilitation, , 6. Johnston, B., Wheeler, L., Deuser, J., and Sousa, K.H. (2000). Outcomes of the Kaiser Perma- nente tele-home health research project. Archies of Family Medicine, (1), 40-45. Kahn, J.S., Aulakh, V., and Bosworth, A. (2009). What it takes: Characteristics of the ideal personal health record. Health Affairs, 28, 369-376. Kidd, C.D., Orr, R., Abowd, G.D., Atkeson, C.G., Essa, I.A., MacIntyre, B., Mynatt, E., Starner, T.E., and Newstetter, W. (1999). The aware home: A living laboratory for ubiquitous computing research. Lecture Notes in Computer Science Series, vol. 1670. Available: http:// www.springerlink.com/content/d598506140k50v26/fulltext.pdf [accessed June 2010].

OCR for page 173
18 HUMAN FACTORS IN HOME HEALTH CARE Kinmonth, A.L., Woodcock, A., Griffin, S., Spiegal, N., and Campbell, M.J. (1998). Random- ized controlled trial of patient-centered care of diabetes in general practice: Impact on current wellbeing and future disease risk. British Medical Journal, 1, 1,202-1,208. Kluge, E.H. (2004). Informed consent to the secondary use of EHRs: Informatics rights and their limitations. Medinfo, 11, 635-638. Marsh, J. (2002). House calls. Rochester Reiew, , 22-26. McKay, H.G., Feil, E.G., Glasgow, R.E., and Brown, J.E. (1998). Feasibility and use of an Internet support service for diabetes self-management. Diabetes Education, 2(2), 174-179. Mead, N., and Bower, P. (2000a). Measuring patient centeredness: A comparison of three observation based instruments. Patient Education and Counseling, , 71-80. Mead, N., and Bower, P. (2000b). Patient centeredness: A conceptual framework and review of the empirical literature. Social Science and Medicine, 1, 1,087-1,110. Mechanic, D. (2008). Rethinking medical professionalism: The role of information technology and practice innovations. Milbank Quarterly, 8(2), 327-358. Montemerlo, M., Pineau, J., Roy, N., Thrun, S., and Verma, V. (2002). Experiences with a mobile robotic guide for the elderly. Proceedings of the Eighteenth AAAI National Con- ference on Artificial Intelligence. Cambridge, MA: MIT Press Morlion, B., Knoop, C., Paiva, M., and Estenne, M. (2002). Internet-based home monitoring of pulmonary function after lung transplantation. American Journal of Respiratory and Critical Care Medicine, 1(5), 694-697. National Alliance for Health Information Technology. (2008). Defining key health information technology terms. Available: http://healthit.hhs.gov/portal/server.pt/gateway/PTARGS_0_ 10741_848133_0_0_18/10_2_hit_terms.pdf [accessed June 2010]. Polisena, J., Coyle, D., Coyle, K., and McGill S. (2009). Home telehealth for chronic disease management: A systematic review and an analysis of economic evaluations. International Journal of Technology Assessment in Health Care, 2(3), 339-349. Preece, J. (2000). Online communities: Designing usability, supporting sociability. Chichester, UK: John Wiley and Sons. Rialle, V., Rumeau, P., Ollivet, C., and Herve, C. (2006). Smart homes. In R. Wootton, S.L. Dimmick and J.C. Kvedar (Eds.), Home telehealth: Connecting care within the commu- nity. London: RSM Press. Richards, T. (1998). Partnership with patients. British Medical Journal, 1, 85-86. Riva, A., Bellazzi, R., and Stefanelli, M. (1997). A web-based system for the intelligent man- agement of diabetic patients. M.D. Computing: Computers in Medical Practice, 1(5), 360-364. Rojas, S.V., and Gagnon, M.P. (2008). A systematic review of the key indicators for assessing telehomecare cost-effectiveness. Telemedicine Journal and E-Health 1(9), 896-904. Roter, D. (1989). Which facets of communication have strong effects on outcome: A meta analysis. In M. Stewart (Ed.), Communicating with medical patients. Thousand Oaks, CA: Sage. Rothschild, S.K., Lapidos, S., Minnick, A., Fogg, L., and Catrambone, C. (2004). Using vir- tual teams to improve the care of chronically ill patients. Journal of Clinical Outcomes Management, 11, 346-350. Salvendy, G. (2006). Handbook of human factors and ergonomics (3rd ed.). Hoboken, NJ: Wiley. Savage, R., and Armstrong, D. (1990). Effect of a general practitioner’s consulting style on patient satisfaction: A controlled study. British Medical Journal, 01, 968-970.

OCR for page 173
1 INFORMATION TECHNOLOGY AND SYSTEMS IN HOME HEALTH CARE Shea, S., Weinstock, R.S., Teresi, J.A., Palmas, W., Starren, J., Cimino, J.J., Lai, A., Field, L., Morin, P.C., Goland, R., Izquierdo, R.E., Ebner, S., Silver, S., Petkova, E., Kong, J., and Eimicke, J.P. (2009). A randomized trial comparing telemedicine case manage- ment with usual care in older, ethnically diverse, medically underserved patients with diabetes mellitus: 5-year results of the IDEATel study. Journal of the American Medical Informatics Association, 1(4), 446-456. Stewart, M. (1995). Studies of health outcomes and patient-centered communication. In M. Stewart, J.B. Brown, and W.W. Weston (Eds.), Patient-centered medicine: Transforming the clinical methods. Thousand Oaks, CA: Sage. Stewart, M., Brown, J.B., and Weston, W.W. (Eds.). (1995). Patient-centered medicine: Trans- forming the clinical method. Thousand Oaks, CA: Sage. Stip, E., and Rialle, V. (2005). Environmental cognitive remediation in schizophrenia: Ethical implications of “smart home” technology. Canadian Journal of Psychiatry, 0, 281-291. Tetley, J., Hanson, E., and Clarke, A. (2001). Older people, telematics and care. In A.M. Warnes, L. Warren and M. Nolan (Eds.), Care serices for later life: Transformations and critiques (pp. 243-258). London: Jessica Kingsley. U.S. Department of Health and Human Services, Office of the Secretary. (1999). Standards for privacy of individually identifiable health information; proposed rule. Federal Register, (212), 59,917-60,016. U.S. Department of Veterans Affairs. (2010). My HealtheVet. Available: http://www.myhealth. va.gov [accessed June 2010]. Volpe, B.T., Krebs, H.I., and Hogan, N. (2001). Is robot-aided sensorimotor training in stroke rehabilitation a realistic option? Current Opinion in Neurology, 1(6), 745-752. Wada, K., and Shibata, T. (2007). Living with seal robots: Its sociopsychological and physi- ological influences on the elderly at a care house. IEEE Transactions on Robotics, 2, 972-980. Whittaker, S., Isaacs, E., and O’Day, V. (1997). Widening the net. Workshop report on the theory and practice of physical and network communities. SIGCHI Bulletin, 2, 27-30. Winner, L. (1990). Living in electronic space. In T. Casey and L. Embree (Eds.), Lifeworld and technology (pp. 1-14): Lanham MD: Center for Advanced Research on Phenomenology and University Press of America. Wylde, M., and Valins, M.S. (1996). The impact of technology. In Valins M.S. and D. Salter (Eds.), Futurecare: New directions in planning health and care enironments (pp. 15-24). Oxford: Blackwell Science.

OCR for page 173