expressed either in years or dollars (Murphy and Topel, 2006). In addition, we discussed briefly how the risk factors that predict future health might bechosen and collected. In the health account, we proposed expressing health outcomes in both natural and monetary units. Monetary valuation of health is difficult: even when the provision of medical care involves prices (although often ones that do not closely reflect cost), some inputs, such as volunteer labor for the chronically ill, do not. Also, nonmedical nonmarket inputs include time invested in one’s own health (for example, exercise and sleep) or in a relative’s health, and such activities often have additional goals besides future health, which complicates evaluation.

A comprehensive—and at this point admittedly futuristic—health account would also attempt to incorporate topic (4). It would not only identify, quantify, and value the flow of nonmedical health inputs, such as behavior trends (e.g., diet, risk taking, smoking, consumption of alcohol), research and development, and the quality of the environment; it would relate both these and medical inputs to current and future population health. While emphasizing the value in monitoring both inputs and outcomes, we have been largely agnostic on exactly how researchers go about the task of quantifying causal links between medical care, health-enhancing activities, and other inputs to the population’s health through disease modeling. This is a difficult area of inquiry, both conceptually and in terms of data requirements, that is being pursued in leading-edge research taking place across many institutions, primarily on a disease-by-disease basis; it is the type of work that BEA will probably never do. That said, results from this research could eventually be used to enhance the usefulness of a national health account that the statistical agencies play a role in constructing. While it is beyond the scope of this study to offer detailed recommendations on this academic research, in this chapter we review some of the ongoing work, offer some general guidance for U.S. efforts going forward, and describe how a national health account would provide a useful centralized data depository from which investigators could draw and into which results may feed.

Much of this chapter is concerned with developing a data system that would allow changes in the population’s health (death and impairment) to be linked to changes in spending on medical care and other factors. While the panel is skeptical about how well, at least in the short run, outcomes can be linked to medical expenditures and other factors, we strongly recommend beginning the process of gathering data in a way that improves the ability of researchers and policy makers to draw causal inferences. Creating and pooling electronic health records (discussed more below) would seem to be a prerequisite on which to focus this line of development.

6.1.
ATTRIBUTION OF HEALTH EFFECTS TO INPUTS

As discussed in Chapter 2, a major policy issue motivating research on the topic of this report is how to gauge the productivity of the medical care system,



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement