Cover Image

PAPERBACK
$65.00



View/Hide Left Panel

14
The Divergent Life-Expectancy Trends in Denmark and Sweden—and Some Potential Explanations

Kaare Christensen, Michael Davidsen, Knud Juel, Laust Mortensen, Roland Rau, and James W. Vaupel

INTRODUCTION

A priori it could be expected that Denmark was among the countries with the longest life expectancy in the world for both men and women due to the fact that other Nordic countries are among the world’s leaders in life expectancy. In the period 1950-1980, life expectancy in Denmark was indeed among the highest in the world, but at the beginning of the new millennium its relative position in the world with regard to life expectancy had changed. In 2000, a life-expectancy chart for 20 Organisation for Economic Co-operation and Development (OECD) countries put Denmark close to the bottom. In particular, the difference between Denmark and its Nordic neighbor, Sweden, countries separated by only a few miles of water, is intriguing. Sweden maintained its position among the world leaders in life expectancy throughout the 20th century and made significant gains in comparison to Denmark. The life-expectancy difference between Sweden and Denmark grew from marginal in the 1950s to 3 years in the early 1990s (Juel, 2008). Starting in the mid-1990s, life expectancy in Denmark (as well as in Sweden) increased annually at a rate corresponding to that of the best-performing countries, although Denmark has been unable to catch up.

This chapter describes the trends in overall mortality and cause-specific mortality, suggests some underlying determinants of reduced life span in Denmark, and compares Denmark with other countries, in particular Sweden. The chapter consists of two parts: a descriptive section with data describing the secular trends and a discussion section that provides a number of possible explanations for the Danish trajectory, which shows



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 385
14 The Divergent Life-Expectancy Trends in Denmark and Sweden— and Some Potential Explanations Kaare Christensen, Michael Daidsen, Knud Juel, Laust Mortensen, Roland Rau, and James W. Vaupel INTRODUCTION A priori it could be expected that Denmark was among the countries with the longest life expectancy in the world for both men and women due to the fact that other Nordic countries are among the world’s leaders in life expectancy. In the period 1950-1980, life expectancy in Denmark was indeed among the highest in the world, but at the beginning of the new mil- lennium its relative position in the world with regard to life expectancy had changed. In 2000, a life-expectancy chart for 20 Organisation for Economic Co-operation and Development (OECD) countries put Denmark close to the bottom. In particular, the difference between Denmark and its Nordic neigh- bor, Sweden, countries separated by only a few miles of water, is intriguing. Sweden maintained its position among the world leaders in life expectancy throughout the 20th century and made significant gains in comparison to Denmark. The life-expectancy difference between Sweden and Denmark grew from marginal in the 1950s to 3 years in the early 1990s (Juel, 2008). Starting in the mid-1990s, life expectancy in Denmark (as well as in Sweden) increased annually at a rate corresponding to that of the best-performing countries, although Denmark has been unable to catch up. This chapter describes the trends in overall mortality and cause-specific mortality, suggests some underlying determinants of reduced life span in Denmark, and compares Denmark with other countries, in particu- lar Sweden. The chapter consists of two parts: a descriptive section with data describing the secular trends and a discussion section that provides a number of possible explanations for the Danish trajectory, which shows 

OCR for page 385
 INTERNATIONAL DIFFERENCES IN MORTALITY AT OLDER AGES improvement-stagnation-improvement but no catch-up for life expectancy at birth and at age 65. SECULAR TRENDS Life Expectancy in Denmark In the 1950s, Denmark was a world leader in life expectancy for both men and women, along with Sweden and the Netherlands, which are usually considered to be very similar to Denmark in many aspects of society. A par- allel increase in life expectancy for these three countries, most pronounced for women, was seen during the three decades leading up to 1980, which marked the beginning of a stagnation period of 10-15 years in Denmark (see Figure 14-1a). The Netherlands experienced a later and shorter stagna- tion period, and Sweden continued with positive development throughout the 20th century. From the mid-1990s, Denmark experienced an annual increase in life expectancy corresponding to that of the best-performing countries, but Danish longevity has not been able to catch up with Sweden. Denmark’s trajectory—improvement-stagnation-improvement but no catch- up—is found also for life expectancy at age 65 (see Figure 14-1b) and at age 80 for men. For women at age 80, however, the trajectory is not so clear (see Figure 14-1c). This development over the second half of the 20th century means that Denmark’s position in life expectancy dropped from rank 3 among 20 OECD countries in the 1950s to rank 17 for men and 20 for women in 2000, while Sweden maintained its position near the top, especially for men (see Figure 14-2) (Juel, 2008). Another informative way to illustrate this development is by looking at the annual increase in life expectancy. Oeppen and Vaupel (2002) show that “best-practice” life expectancy, that is, the highest value recorded in a single country in a given year, rose by about 2.5 years every decade (2.43 years) for women, starting in 1840. Male life-expectancy improvements oc- curred at the slightly slower pace of 2.22 years per decade. A comparison of Denmark’s life-expectancy improvement increases with these best-practice increases (see Figure 14-3a) shows that, in the middle and at the end of the 20th century, Denmark had attained best-practice life-expectancy increases for women, while for men best-practice increases were only seen at the end of the period. In the late 1980s and the early 1990s, Denmark’s life- expectancy improvement rates were close to zero. The pattern at age 65 is similar to the patterns described above but less pronounced and are even less so at age 80 (see Figures 14-3b and 14-3c). In Sweden, life expectancy at birth for women in 2007 reached 83 years; for women who survived to age 83, remaining life expectancy was 7.5 ad- ditional years. Life disparity can be measured as the average remaining life

OCR for page 385
 DIVERGENT LIFE EXPECTANCY TRENDS IN DENMARK AND SWEDEN expectancy at the ages when death occurs: in Sweden, a female death shortly after birth would contribute 83 years, whereas a death at age 83 would contribute 7.5 years. The average of such values, weighted by the number of deaths at each age, gives a life disparity of 9 (Zhang and Vaupel, 2009). Zhang and Vaupel (unpublished) performed analyses of the correlation between life disparity in a specific year and life expectancy in that year for men and women in 33 countries and regions. They found that during the 168 years from 1840 to 2007, 113 holders of record life expectancy also had the lowest life disparity. Countries with long life expectancy tend to have low life disparity because these countries have been successful in reduc- ing premature deaths—doing so increases life expectancy and reduces life disparity. That is, efforts to avert deaths that occur at ages well below the life expectancy of a population appear to be especially effective in increas- ing life expectancy—and, simultaneously, reducing life disparity. Analyses of life disparity in Denmark show that a slowing of progress in reducing differentials in life spans occurred at about the same time as the slowing of progress in increasing life expectancy (see Figures 14-4a and 14-4b). Cause-Specific Mortality in Denmark Analyses of cause-specific mortality for men and women in Denmark show that mortality rates from major causes of death, such as heart disease, have declined since the 1970s. However, lung cancer mortality increased for women throughout the second half of the 20th century. For men the increase was more pronounced until around 1980, when the rate stabilized. For alcohol-related mortality, an increase is seen from 1970 onward for both genders, again most pronounced for men. Denmark is now among the countries with the highest tobacco- and alcohol-related mortality rates in 20 OECD countries (see Figures 14-5a and 14-5b), when alcohol-related deaths are calculated from alcohol-related diagnoses from death certificates and tobacco-related deaths are calculated from the method of Peto et al. (1992). These cause-specific mortality rates correspond to the trend in the inci- dence of major underlying diseases. Figure 14-6 shows the dramatic increase in lung cancer among women in Denmark compared with other countries in the same time period. Figure 14-7 shows the dramatic decline in heart disease mortality in all the study countries, with Denmark, however, still having the highest mortality among women at the end of the period. Peto et al. (1992) developed a method that uses absolute age- and sex- specific lung cancer rates to indicate the approximate proportions of deaths due to tobacco not only from lung cancer itself but also, indirectly, from vascular disease and various other categories of disease. This method was applied by Brønnum-Hansen and Juel (2000) to Danish data from the early

OCR for page 385
 INTERNATIONAL DIFFERENCES IN MORTALITY AT OLDER AGES a Women Men 85 85 80 80 75 75 e0 e0 70 70 65 65 60 60 1950 1960 1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010 Year Year b Fig14-1a.eps Women Men 25.0 25.0 22.5 22.5 22.0 22.0 17.5 17.5 e85 e85 15.0 15.0 12.5 12.5 10.0 10.0 1950 1960 1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010 Year Year Fig14-1b.eps

OCR for page 385
 DIVERGENT LIFE EXPECTANCY TRENDS IN DENMARK AND SWEDEN Women Men c 11 11 10 10 9 9 8 8 e80 e80 7 7 6 6 5 5 4 4 1950 1960 1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010 Year Year FIGURE 14-1 Life expectancy in Denmark and other high-income countries. Fig14-1c.eps (a) At birth (b) At age 65 (c) At age 80

OCR for page 385
0 0 Highest 1 2 3 4 5 6 7 8 9 10 11 12 13 Relative Placement 14 15 16 17 18 19 Lowest 20 1950 -1959 1960-1969 1970 -1979 1980-1989 1990 -1999 2000-2004 Swedish men Swedish women Danish men Danish women FIGURE 14-2 Denmark’s and Sweden’s rank in life expectancy at birth among 20 OECD countries. Fig14-2.eps landscape patterned fills

OCR for page 385
 DIVERGENT LIFE EXPECTANCY TRENDS IN DENMARK AND SWEDEN 1990s, and it shows that 35 percent of deaths among men and 25 percent of deaths among women were attributable to cigarette smoking. Brønnum- Hansen and Juel (2000) also applied a simulation model (Prevent), in which a multifactorial generalization of the etiological fraction is used, including information on several diseases and time dimensions simultaneously. The two methods are fundamentally different, but they give approximately the same results. The Prevent model estimated that 33 percent of deaths among men and 23 percent of deaths among women in the early 1990s were from chronic bronchitis, emphysema, ischemic heart disease, lung cancer, and stroke caused by cigarette smoking. Life Expectancy in Denmark and Sweden A comparison of life expectancy in Denmark and Sweden is particularly interesting due to their differences (their very divergent life-expectancy trends) and their similarities (close geographical and cultural proximity, both being Scandinavian welfare state countries, and having quite similar languages). In fact, Sweden is called broderfolket (“the brother people”) in Denmark, and the two countries are separated by only a few miles of water (see Figure 14-8). The divergent trend of the two countries is illustrated in the OECD rankings in Figure 14-2 and in Lexis surface diagrams (Andreev, 2002). The surface diagrams show that, since 1980, Sweden has had lower or equal mortality at practically all ages for all cohorts. For children and teenagers, the Swedish advantages go back to the 1960s and 1970s. For Danish women, a clear cohort effect is seen with very high mortality, espe- cially after age 40, for women born between the two world wars compared with similar Swedish women. Juel (2008) estimated how much smoking- and alcohol-related mortal- ity could explain the differences in life expectancy and mortality patterns in Denmark and Sweden. Smoking-related mortality was estimated by the Peto et al. (1992) method, and alcohol-related mortality was estimated by selecting deaths for which the diagnosis was related to alcohol (alcohol intoxication, alcoholism, cirrhosis of the liver, and pancreatitis). Based on data from 1997-2001, Juel shows that smoking- and alcohol- related mortality could explain nearly all the difference between Danish and Swedish men and approximately three-quarters of the difference between Danish and Swedish women. Distribution of Lifestyle Risk Factors National comparable survey data are available for the period when Denmark went from stagnating to increasing in life expectancy. Four na- tionally representative health interview surveys among adult Danes were

OCR for page 385
a b Annual Increase in e65 in Years Annual Increase in e0 in Years  (in successive 10-year periods) (in successive 10-year periods) –0.1 0 0.1 0.2 0.3 0.4 0.5 –0.1 0 0.1 0.2 0.3 0.4 0.5 1960 1960 1970 1970 1980 1980 Year Year Women Women 1990 1990 2000 2000 2010 2010 Annual Increase in e65 in Years Annual Increase in e0 in Years (in successive 10-year periods) (in successive 10-year periods) –0.1 0 0.1 0.2 0.3 0.4 0.5 –0.1 0 0.1 0.2 0.3 0.4 0.5 Fig14-3a.eps Fig14-3b.eps 1960 1960 1970 1970 1980 1980 Men Men Year Year 1990 1990 2000 2000 2010 2010 INTERNATIONAL DIFFERENCES IN MORTALITY AT OLDER AGES

OCR for page 385
 DIVERGENT LIFE EXPECTANCY TRENDS IN DENMARK AND SWEDEN c Women Men 0.5 0.5 (in successive 10-year periods) (in successive 10-year periods) Annual Increase in e80 in Years Annual Increase in e80 in Years 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010 –0.1 –0.1 Year Year Fig14-3c.eps FIGURE 14-3 Annual increase in life expectancy. (a) At birth (b) At age 65 (c) At age 80

OCR for page 385
 INTERNATIONAL DIFFERENCES IN MORTALITY AT OLDER AGES Men Men a 13.5 76 13.0 74 12.5 72 12.0 e† e0 70 11.5 11.0 68 10.5 1950 1960 1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010 Year Year b Women Women Fig14-4a.eps 80 12.0 78 11.5 76 11.0 e† e0 74 10.5 72 70 10.0 1950 1960 1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010 Year Year FIGURE 14-4 Life expectancy (e0) and life disparity (e†) over time for Danish women and men. Fig14-4b.eps (a) Men (b) Women NOTE: Life disparity is a measure of discrepancies in life spans; it is calculated as the average remaining life expectancy at the ages of death (Zhang and Vaupel, 2009). Note the inverse relationship between life expectancy and life disparity: in years when life expectancy increases rapidly, life disparity decreases rapidly.

OCR for page 385
a (a) Tobacco-related mortality Lowest 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Highest 20 1950 -1959 1960-1969 1970 -1979 1980-1989 1990 -1999 2000 -2007 Swedish men Swedish women Danish men Danish women FIGURE 14-5 Denmark’s rank among the 20 OECD countries for (a) tobacco-related mortality and (b) liver cirrhosis. Fig14-5a.eps (a) Tobacco-related mortality landscape (b) Liver cirrhosis  patterned fills

OCR for page 385
 INTERNATIONAL DIFFERENCES IN MORTALITY AT OLDER AGES a ( a) Men 1,000 80 0 60 0 40 0 20 0 Denmark Norway Sweden Finland United Kingdom Netherlands Germany France 0 1950 -1954 1960 -1964 1970 -1974 1980 -1984 1990 -1994 20 00 -2004 b (b) Women Fig14-7a.eps 50 0 dashed rules--original did not discriminate between 40 0 Finland-UK or Germany-France. Made a guess--may need changing. 30 0 20 0 10 0 Denmark Norway Sweden Finland United Kingdom Netherlands Germany France 0 1950 -1954 1960 -1964 1970 -1974 1980 -1984 1990 -1994 20 00 -2004 FIGURE 14-7 Heart disease mortality at ages 35-74 (age-standardized rates). Fig14-7b.eps (a) Men dashed rules--original did not discriminate between (b) Women Finland-UK or Germany-France. Made a guess--may need changing. High alcohol consumption is defined as drinking above moderate drinking limits (21 units of alcohol for men and 14 for women per week). Physical activity during leisure time was categorized as none (sedentary), little (light exercise), and moderate/heavy (regular exercise more than 4 hours per week or competitive sport). From self-reported information on body weight and body height, the BMI was calculated as weight in kilograms divided by the square of height in meters. BMI was categorized as “underweight” (BMI < 18.5), “normal weight” (18.5 ≤ BMI < 25), “overweight” (25 ≤ BMI < 30),

OCR for page 385
 DIVERGENT LIFE EXPECTANCY TRENDS IN DENMARK AND SWEDEN FIGURE 14-8 Neighboring Nordic countries with a 3-year difference in life expec- Fig14-8.eps tancy: A few miles of water separate Denmark and Sweden. bitmap and “obese” (BMI ≥ 30). The development from 1987 to 2005 is shown in Figures 14-9 through 14-12. The figures show that the improvement in Danish life expectancy that occurred in the mid-1990s co-occurs with a decrease in three mortality risk factors: smoking, alcohol consumption, and sedentary lifestyle, while one risk factor, the obesity rate, goes up, albeit to a low level compared with, for example, the United States (see Chapter 6, in this volume). A recent study shows the great impact of these risk factors on Danish life expectancy (Juel, Sorensen, and Bronnum-Hansen, 2008).

OCR for page 385
00 INTERNATIONAL DIFFERENCES IN MORTALITY AT OLDER AGES 60 50 40 Percentage 30 Men Women 20 10 0 1987 1994 2000 2005 Year FIGURE 14-9 Proportion (%) of smokers in Denmark among men and women ages 35-64. SOURCE: National Institute of Public Health, Copenhagen. Figures from the Na- Fig14-9.eps tional Health Interview Surveys (2009). 25 20 Percentage 15 Men 10 Women 5 0 1987 1994 2000 2005 Year FIGURE 14-10 Alcohol consumption in Denmark among men and women ages Fig14-10.eps 35-64. NOTE: Proportion (%) drinking over moderate drinking limits. Alcohol consump- tion was defined on the basis of a combination of the number of drinks consumed the last weekday and the number of drinks consumed the last weekend. High alco- hol consumption is defined as drinking above moderate drinking limits: 21 units of alcohol for men and 14 for women per week. The Health Care System There has been a long-standing debate concerning the extent to which the level of investment in the Danish health care system could account for part of the difference in life expectancy in Denmark and Sweden. Both countries base their health care policy on the Scandinavian universal welfare state model, with free and equal access to health care. Using the OECD

OCR for page 385
0 DIVERGENT LIFE EXPECTANCY TRENDS IN DENMARK AND SWEDEN 15 12 Percentage 9 Men Women 6 3 0 1987 1994 2000 2005 Year FIGURE 14-11 Proportion (%) of obese persons in Denmark among men and Fig14-11.eps women ages 35-64. NOTES: From self-reported information on body weight and body height, the BMI was calculated as weight in kilograms divided by the square of height in meters. BMI was categorized as “underweight” (BMI < 18.5), “normal weight” (18.5 ≤ BMI < 25), “overweight” (25 ≤ BMI < 30) and “obese” (BMI ≥ 30). 30 25 Percentage 20 Men 15 Women 10 5 0 1987 1994 2000 2005 Year FIGURE 14-12 Proportion (%) of sedentary persons in Denmark among men and women ages 35-64. Fig14-12.eps NOTE: Physical activity during leisure time was categorized as none (sedentary), little (light exercise), and moderate/heavy (regular exercise more than 4 hours per week or participating in a competitive sport). figures for health care expenditures (see http://www.oecd.org [accessed June 8, 2010]), Denmark and Sweden have very similar expenditures when measured as a percentage of each nation’s gross domestic product (GDP). It has been argued, however, that in Denmark, unlike Sweden and many other countries, elder care (nursing homes and municipal support) is part of the official health care budget and thus raises health care expenditures by its inclusion (Søgaard, 2008). Considering that elder care is very well developed

OCR for page 385
0 INTERNATIONAL DIFFERENCES IN MORTALITY AT OLDER AGES in Denmark, this entails substantial expenditures. It has been argued that if elder care were subtracted out, the real investment in more traditional health care, including hospitals, would result in a much lower figure for Denmark’s health care expenditures as a percentage of GDP (Søgaard, 2008). The dif- ference in, for example, case fatality rates for acute myocardial infarction among men ages 35-74, which is higher in Denmark (see Figure 14-13), could be due to a poorer performance of the Danish health care system, a system that might perform better with more investment. But it could also be due to the higher smoking and alcohol use in Denmark compared with Sweden, as both smoking and alcohol are known to worsen the prognosis for a wide variety of diseases. To avoid the impact of patient lifestyle factors on the outcome, we studied neonatal mortality. Of course, maternal lifestyle factors influence neonatal mortality, but that influence is likely to be smaller than the impact of lifestyle on the individual herself. Neonatal survival chances are highly dependent on specialized medical care, which is typically administered by neonatal intensive care units, in which technologies, such as continuous positive airway pressure and surfactant therapy, have pushed the limit of viability downward (Goldenberg and Rouse, 1998). Using comparable data from the Danish, Norwegian, and Swedish national birth registries (Petersen et al., 2008), we studied neonatal mortality—defined as death within the first 28 days of life among live births, using comparable definitions in all three data sets, stratified for gestational age—and found an intriguing pat- tern (see Figure 14-14). 20 15 10 Denmark Sweden 5 0 1987 1989 1991 1993 1995 1997 1999 FIGURE 14-13 Health care indicator: Case-fatality rates on days 1-28 for acute myocardial infarction among men ages 35-74 in Denmark and Sweden, 1987- 1999. Fig14-13.eps

OCR for page 385
0 DIVERGENT LIFE EXPECTANCY TRENDS IN DENMARK AND SWEDEN a 2.5 2.0 1.5 Sweden Norway Denmark 1.0 0.5 0 1975 1980 1985 1990 1995 2000 2005 b 30 25 Fig14-14a.eps 20 Sweden Norway 15 Denmark 10 5 0 1975 1980 1985 1990 1995 2000 2005 300 c Fig14-14b.eps 250 200 Sweden Norway 150 Denmark 100 50 0 1975 1980 1985 1990 1995 2000 2005 FIGURE 14-14 Neonatal mortality (0-28 days) per 1,000 births. (a) Term newborns (37-42 weeks) Fig14-14c.eps (b) Moderately preterm (33-36 weeks) (c) Very preterm (28-32 weeks)

OCR for page 385
0 INTERNATIONAL DIFFERENCES IN MORTALITY AT OLDER AGES For children born at term, there were similar mortality rates in the three Scandinavian countries in the 1980s. In Denmark, the neonatal mortality has remained practically unchanged since that period, whereas there has been a decline in the other two Scandinavian countries. Among moderately preterm births (at 33-36 weeks), Denmark had higher mortality throughout the period but experienced a decline of a similar magnitude as the other two Scandinavian countries. Finally, for the very preterm births (at 28-32 weeks), Denmark had substantially higher mortality in the 1980s than the other two countries but caught up in the late 1990s. The result for the newborns born at term and the moderately preterm are compatible with a scenario suggesting that there is less effective health care in Denmark than in Sweden (or Norway), although a spillover of maternal effect (e.g., smoking) in Denmark cannot be excluded. However, the pattern of very preterm mor- tality in Denmark is not in accordance with that scenario, although it must be considered that the choice of intensity in the treatment of very preterm babies is not only a question of resources but also of ethical considerations and evaluation of the prognosis (EXPRESS Group, 2009). Apart from the effect of medical intervention following preterm birth, some of the change in association between gestational age and neonatal mortality might be due to elective termination of pregnancies, such as after screening early in pregnancy (Liu et al., 2002). However, the proportion of babies born before week 32 is similar in Sweden and Denmark (Petersen et al., 2009). DISCUSSION Smoking—The Major Explanation The data presented above on cause-of-death trajectories, the disease incidence pattern, and the fractions of death estimated to be attributable to smoking using fundamentally different methods all suggest that smok- ing is the major explanation for the divergent Danish life expectancy trend compared with Sweden. This is in line with the work of Wang and Preston (2009) showing that cohort differences in smoking account for important anomalies in the recent age-sex pattern of mortality change in the United States. An important question is: Why do Danes smoke more than people in comparable countries? An unusual explanation was suggested by Kesteloot (2001): “Halting of the decline in mortality occurred about 5 years after the ascension to the throne of Denmark by Queen Margrethe II. The queen is very popular in Denmark and a known cigarette smoker. As a role model for women, the Queen’s example could offer an explanation for the unusual mortality in Danish women.” However, the excess mortality for

OCR for page 385
0 DIVERGENT LIFE EXPECTANCY TRENDS IN DENMARK AND SWEDEN Danish women born between the two world wars had previously been ex- tensively studied (Jacobsen et al., 2000, 2001, 2004, 2006; Juel, 2000; Juel, Bjernegaard, and Madsen, 2000), and studies document that the stagnation started well before the queen took the throne. A more likely explanation is the liberal Danish tobacco policy; it was not until 2007 that smoking was prohibited in restaurants, and there are still exceptions (smoking is allowed in small restaurants). Lifestyle and Health Care—Other Likely Contributors The increase in alcohol-related deaths in Denmark and fractions of death estimated to be attributable to alcohol use suggest an important role also for alcohol, especially when comparing Denmark and Sweden. There are also some indications that investment in health care is lower in Denmark than in Sweden. The prognosis for both heart disease and cancer (see Figure 14-13 and Specht and Lundberg, 2001) is poorer, although it cannot be ruled out that the higher smoking prevalence and alcohol consumption, as well as other lifestyle factors, play a role in this development. Finally, analyses of life dis- parity (i.e., differences in life span) in Denmark suggest a slowing of progress in reducing life disparity occurring at roughly the same time as the slowing of progress in increasing life expectancy. That is, Danish life expectancy may have stagnated, at least in part, because the Danes did not continue to reduce inequalities in the length of life in the 1970s and 1980s. What Caused the Change in Life Expectancy in Denmark? The change from stagnation to improvement in life expectancy in the mid-1990s coincided with a decrease in the prevalence of major lifestyle risk factors: smoking, alcohol consumption, and sedentary lifestyle, which correspond to the changes seen in disease incidence. The obesity rate went up in the same time period, but only to a low level when compared with the United States. Denmark’s generally positive development in lifestyle risk factors occurs despite a widespread reluctance toward “paternalistic policy” in the country. As an example, smoking was not prohibited in restaurants in Denmark until 2007. Also co-occurring with the change from stagnation to improvement in life expectancy in the mid-1990s, Denmark instituted what is called the “Heart Plan,” which allocated substantial national funding to improve cardiovascular disease treatments. The reason for the improvement in life expectancy in the early 1990s is mainly decreasing cardiovascular mortality, probably attributable to a better lifestyle profile for most Danes, more behavioral and medical disease prevention services, and better medical and surgical treatment.

OCR for page 385
0 INTERNATIONAL DIFFERENCES IN MORTALITY AT OLDER AGES REFERENCES Andreev, K.F. (2002). Eolution of the Danish Population from  to 000. Odense mono- graphs on population aging 9. Odense, Denmark: Odense University Press. Brønnum-Hansen, H., and Juel, K. (2000). Estimating mortality due to cigarette smoking: Two methods, same result. Epidemiology, (4), 422-426. Ekholm, O., Hesse, U., Davidsen, M., and Kjøller, M. (2009). The study design and charac- teristics of the Danish national health interview surveys. Scandinaian Journal of Public Health (in press). EXPRESS Group. (2009). One-year survival of extremely preterm infants after active perinatal care in Sweden. Journal of the American Medical Association, 0(21), 2225-2233. Jacobsen, R., Keiding, N., and Lynge, E. (2000). Long-term mortality trends behind low life expectancy of Danish women. Journal of Epidemiology and Community Health, , 205-208. Jacobsen, R., Jensen, A., Keiding, N., and Lynge, E. (2001). Queen Margrethe II and mortality in Denmark. Lancet, , 875. Jacobsen, R., Von Euler, M., Osler, M., Lynge, E., and Keiding, N. (2004). Women’s death in Scandinavia—What makes Denmark different? European Journal of Epidemiology, , 117-121. Jacobsen, R., Keiding, N., and Lynge, E. (2006). Causes of death behind low life expectancy of Danish women. Scandinaian Journal of Public Health, , 432-436. Juel, K. (2000). Increased mortality among Danish women: Population based register study. British Medical Journal, (7257), 349-350. Juel, K. (2004). Mortality in Denmark During 00 Years. The Danes Are Liing Longer, but Why - Years Shorter than Swedish Men and French Women? Copenhagen, Denmark: National Institute of Public Health. Juel, K. (2008). Middellevetid og dødelighed i Danmark sammenlignet med i Sverige. Hvad be- tyder rygning og alkohol? [Life expectancy and mortality in Denmark compared to Swe- den. What is the effect of smoking and alcohol?] Ugeskr Laeger, 0(33), 2423-2427. Juel, K., and Christensen, K. (2007). Kønsforskelle i dødelighed i Danmark 1840-2005. Kvin- der lever længere end mænd, men der er sket store ændringer i de seneste 50 år. Ugeskr Læger, (25), 2398-2403. Juel, K., Bjerregaard, P., and Madsen, M. (2000). Mortality and life expectancy in Denmark and in other European countries: What is happening to middle-aged Danes? European Journal of Public Health, 0(2), 93-100. Juel, K., Sorensen, J., and Bronnum-Hansen, H. (2008). Risk factors and public health in Denmark. Scandinaian Journal of Public Health, (Suppl 1), 112-227. Kesteloot, H. (2001). Queen Margrethe II and mortality in Danish women. Lancet, , 871-72. Kramer, M.S. (2003). The epidemiology of adverse pregnancy outcomes. Journal of Nutrition, (5 Suppl 2), 1592S-1596S. Kramer, M.S., Demissie, K., Yang, H., Platt, R.W., Sauve, R., and Liston, R. (2000). The con- tribution of mild and moderate preterm birth to infant mortality. Fetal and Infant Health Study Group of the Canadian Perinatal Surveillance System. Journal of the American Medical Association, , 843-849. Liu, S., Joseph, K.S., Kramer, M.S., Allen, A.C., Sauve, R., Rusen, I.D., and Wen, S.W. (2002). Relationship of prenatal diagnosis and pregnancy termination to overall infant mortality in Canada. Journal of the American Medical Association, (12), 1561-1567. Mortensen, L.H., Diderichsen, F., Arntzen, A., Gissler, M., Cnattingius, S., Schnor, O., Davey- Smith, G., Nybo Andersen, A-M. (2008). Social inequality in fetal growth: A comparative study. Journal of Epidemiology and Community Health, (4), 325-331.

OCR for page 385
0 DIVERGENT LIFE EXPECTANCY TRENDS IN DENMARK AND SWEDEN Oeppen, J., and Vaupel, J.W. (2002). Broken limits to life expectancy. Science, , 1029- 1031. Pedersen, C.B., Gotzsche, H., Moller, J.O., and Mortensen, P.B. (2006). The Danish Civil Registration System: A cohort of eight million persons. Danish Medical Bulletin, (4), 441-449. Petersen, C.B., Mortensen, L.H., Morgen, C.S., Madsen, M., Schnor, O., Arntzen, A., Gissler, M., Cnattingius, S., and Andersen, A.M. (2009). Socio-economic inequality in preterm birth: A comparative study of the Nordic countries from 1981 to 2000. Paediatric and Perinatal Epidemiology, , 66-75. Peto, R., Lopez, A.D., Boreham, J., Thun, M., and Heath, C. (1992). Mortality from tobacco in developed countries: Indirect estimation from national vital statistics. Lancet, , 1268-1278. Rasmussen, S., Abildstrøm, S.Z., Rosén, M., and Madsen, M. (2004). Case-fatality rates for myocardial infarction declined in Denmark and Sweden during 1987-1999. Journal of Clinical Epidemiology, , 638-646. Søgaard, J. (2008). Har 35 års lavvækst I sundhedsvæsenet betydet større social ulighed i sund- hed i Danmark? In J.G. Rasmussen and N. Döllner (Eds.), Den tunge ende. Sandheden om ulighederne og uretfærdighederne i den danske sundhed (pp. 175-191). Copenhagen, Denmark: Forfatterne og Dagens Medicins Bøger. Specht, L.K., and Landberg, T. (2001). Kræftbehandling i Skåne og på Sjælland. Er forskelle i udredning og behandling med til at forklare danske kræftpatienters dårligere overlevelse? [Cancer treatment in Skane and in Sjaelland. Do differences concerning examination and treatment explain reduced survival among Danish cancer patients?] Ugeskr Laeger, , 439-442. Wang, H., and Preston, S.H. (2009). Forecasting United States mortality using cohort smoking histories. Proceedings of the National Academy of Sciences, 0(2), 393-398. Zhang, Z., and Vaupel, J.W. (2009). The age separating early deaths from late deaths. Demo- graphic Research, 0, 721-730.

OCR for page 385