CONTROLLING COST GROWTH OF NASA EARTH AND SPACE SCIENCE MISSIONS

Committee on Cost Growth in NASA Earth and Space Science Missions

Space Studies Board

Division on Engineering and Physical Sciences

NATIONAL RESEARCH COUNCIL
OF THE NATIONAL ACADEMIES

THE NATIONAL ACADEMIES PRESS

Washington, D.C.
www.nap.edu



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page R1
Committee on Cost Growth in NASA Earth and Space Science Missions Space Studies Board Division on Engineering and Physical Sciences

OCR for page R1
THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This study is based on work supported by Contract NNH06CE15B between the National Academy of Sciences and the National Aeronautics and Space Administration. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the agency that provided support for the project. International Standard Book Number-13: 978-0-309-15737-7 International Standard Book Number-10: 0-309-15737-4 Cover: Cover design by Tim Warchocki. Copies of this report are available free of charge from: Space Studies Board National Research Council 500 Fifth Street, N.W. Washington, DC 20001 Additional copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Wash - ington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu. Copyright 2010 by the National Academy of Sciences. All rights reserved. Printed in the United States of America

OCR for page R1
The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Ralph J. Cicerone is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, shar- ing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and rec - ognizes the superior achievements of engineers. Dr. Charles M. Vest is president of the National Academy of Engineering. The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine. The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad com - munity of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the gov - ernment, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Ralph J. Cicerone and Dr. Charles M. Vest are chair and vice chair, respectively, of the National Research Council. www.national-academies.or g

OCR for page R1
OTHER REPORTS OF THE SPACE STuDIES BOARD Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies: Final Report (Space Studies Board [SSB] with the Aeronautics and Space Engineering Board [ASEB], 2010) An Enabling Foundation for NASA’s Space and Earth Science Missions (SSB, 2010) Revitalizing NASA’s Suborbital Program: Advancing Science, Driving Innovation, and Developing a Workforce (SSB, 2010) America’s Future in Space: Aligning the Civil Space Program with National Needs (SSB with ASEB, 2009) Approaches to Future Space Cooperation and Competition in a Globalizing World: Summary of a Workshop (SSB with ASEB, 2009) Assessment of Planetary Protection Requirements for Mars Sample Return Missions (SSB, 2009) Near-Earth Object Surveys and Hazard Mitigation Strategies: Interim Report (SSB, 2009) A Performance Assessment of NASA’s Heliophysics Program (SSB, 2009) Radioisotope Power Systems: An Imperative for Maintaining U.S. Leadership in Space Exploration (SSB with ASEB, 2009) Ensuring the Climate Record from the NPOESS and GOES-R Spacecraft: Elements of a Strategy to Recover Measurement Capabilities Lost in Program Restructuring (SSB, 2008) Launching Science: Science Opportunities Provided by NASA’s Constellation System (SSB with ASEB, 2008) Opening New Frontiers in Space: Choices for the Next New Frontiers Announcement of Opportunity (SSB, 2008) Science Opportunities Enabled by NASA’s Constellation System: Interim Report (SSB with ASEB, 2008) Severe Space Weather Events—Understanding Societal and Economic Impacts: A Workshop Report (SSB, 2008) Space Science and the International Traffic in Arms Regulations: Summary of a Workshop (SSB, 2008) United States Civil Space Policy: Summary of a Workshop (SSB with ASEB, 2008) Assessment of the NASA Astrobiology Institute (SSB, 2007) An Astrobiology Strategy for the Exploration of Mars (SSB with the Board on Life Sciences [BLS], 2007) Building a Better NASA Workforce: Meeting the Workforce Needs for the National Vision for Space Exploration (SSB with ASEB, 2007) Decadal Science Strategy Surveys: Report of a Workshop (SSB, 2007) Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond (SSB, 2007) Exploring Organic Environments in the Solar System (SSB with the Board on Chemical Sciences and Technology, 2007) Grading NASA’s Solar System Exploration Program: A Midterm Review (SSB, 2007) The Limits of Organic Life in Planetary Systems (SSB with BLS, 2007) NASA’s Beyond Einstein Program: An Architecture for Implementation (SSB with the Board on Physics and Astronomy [BPA], 2007) Options to Ensure the Climate Record from the NPOESS and GOES-R Spacecraft: A Workshop Report (SSB, 2007) A Performance Assessment of NASA’s Astrophysics Program (SSB with BPA, 2007) Portals to the Universe: The NASA Astronomy Science Centers (SSB, 2007) The Scientific Context for Exploration of the Moon (SSB, 2007) Limited copies of SSB reports are available free of charge from: Space Studies Board National Research Council The Keck Center of the National Academies 500 Fifth Street, N.W., Washington, DC 20001 (202) 334-3477/ssb@nas.edu www.nationalacademies.org/ssb/ssb.html iv

OCR for page R1
COMMITTEE ON COST GROWTH IN NASA EARTH AND SPACE SCIENCE MISSIONS RONALD M. SEGA, Colorado State University, Chair VASSILIS ANGELOPOULOS, University of California, Los Angeles ROBERT E. BITTEN,1 The Aerospace Corporation ALLAN V. BURMAN, Jefferson Consulting Group, LLC OLIVIER L. de WECK, Massachusetts Institute of Technology ROBERT E. DEEMER, Regis University LARRY W. ESPOSITO, University of Colorado, Boulder JOSEPH FULLER, JR., Futron Corporation JOSEPH W. HAMAKER, Science Applications International Corporation VICTORIA E. HAMILTON, Southwest Research Institute JOHN M. KLINEBERG, Aerospace Consultant ROBERT P. LIN,2 University of California, Berkeley BRUCE D. MARCUS, TRW Inc. (Retired) EMERY I. REEVES, Independent Consultant WILLIAM F. TOWNSEND, Independent Consultant Staff ALAN C. ANGLEMAN, Senior Program Officer, Study Director CATHERINE A. GRUBER, Editor ANDREA M. REBHOLZ, Program Associate LINDA WALKER, Senior Project Assistant MICHAEL H. MOLONEY, Director 1Resigned from committee on September 2, 2009. 2Resigned from committee on September 8, 2009. v

OCR for page R1
SPACE STuDIES BOARD CHARLES F. KENNEL, Scripps Institution of Oceanography, University of California, San Diego, Chair A. THOMAS YOUNG, Lockheed Martin Corporation (retired), Vice Chair DANIEL N. BAKER, University of Colorado STEVEN J. BATTEL, Battel Engineering CHARLES L. BENNETT, Johns Hopkins University YVONNE C. BRILL, Aerospace Consultant ELIZABETH R. CANTWELL, Oak Ridge National Laboratory ANDREW B. CHRISTENSEN, Dixie State College and Aerospace Corporation ALAN DRESSLER, The Observatories of the Carnegie Institution JACK D. FELLOWS, University Corporation for Atmospheric Research FIONA A. HARRISON, California Institute of Technology JOAN JOHNSON-FREESE, U.S. Naval War College KLAUS KEIL, University of Hawaii MOLLY K. MACAULEY, Resources for the Future BERRIEN MOORE III, Climate Central ROBERT T. PAPPALARDO, Jet Propulsion Laboratory, California Institute of Technology JAMES PAWELCZYK, Pennsylvania State University SOROOSH SOROOSHIAN, University of California, Irvine JOAN VERNIKOS, Thirdage LLC JOSEPH F. VEVERKA, Cornell University WARREN M. WASHINGTON, National Center for Atmospheric Research CHARLES E. WOODWARD, University of Minnesota ELLEN G. ZWEIBEL, University of Wisconsin MICHAEL H. MOLONEY, Director (from April 1, 2010) RICHARD E. ROWBERG, Interim Director (until March 31, 2010) CARMELA J. CHAMBERLAIN, Administrative Coordinator TANJA PILZAK, Manager, Program Operations CELESTE A. NAYLOR, Information Management Associate CHRISTINA O. SHIPMAN, Financial Officer SANDRA WILSON, Financial Assistant vi

OCR for page R1
Preface Cost and schedule growth is a problem experienced by many types of projects in many fields of endeavors. Based on prior studies of cost growth in National Aeronautics and Space Administration (NASA) and Department of Defense projects, this report identifies specific causes of cost growth associated with NASA Earth and space science missions and provides guidance on how NASA can overcome these specific problems. The study was prompted by the NASA Authorization Act of 2008 (P.L. 110-422), which directed the NASA administrator to sponsor an “independent external assessment to identify the primary causes of cost growth in the large-, medium-, and small- sized space and Earth science spacecraft mission classes, and make recommendations as to what changes, if any, should be made to contain costs and ensure frequent mission opportunities in NASA’s science spacecraft mission programs.” The NASA Science Mission Directorate subsequently made arrangements with the National Research Council to conduct a study that would execute the following statement of task (see Appendix A): The National Research Council will assemble a committee to identify the primary causes of cost growth in NASA Earth and space science missions involving large, medium, and small spacecraft. The committee will recommend what changes, if any, should be made to contain costs and ensure frequent mission opportunities in NASA’s Earth and space science programs. In particular, the committee will: • Review existing cost growth studies related to NASA space and Earth science missions and identify their key causes of cost growth and strategies for mitigating cost growth. • Assess whether those key causes remain applicable in the current environment and identify any new major causes. • Evaluate the effectiveness of current and planned NASA cost growth mitigation strategies and, as appropriate, recommend new strategies to ensure frequent mission opportunities. In making this assessment and related recommendations, the committee should note relevant differences, if any, that exist between Earth and space science missions. The recommendations in this report focus on changes in NASA policies that would directly reduce or elimi - nate the cost growth of Earth and space science missions. This report does not assess trends in the average cost of missions from year to year or decade to decade, nor does it explicitly address the broader issue of how missions are selected or how the baseline cost of NASA Earth and space science missions might be reduced, for example, by changes in general policies regarding export controls or management of NASA personnel, contracting, or center organization. The committee was not specifically tasked with addressing schedule growth but, as detailed vii

OCR for page R1
viii PREFACE in the report, schedule growth causes cost growth, and so schedule growth is addressed in some findings and recommendations. The Committee on Cost Growth in NASA Earth and Space Science Missions was established to conduct this study and has extensive experience in Earth science, space science, and space exploration, including management of industry and NASA centers, spacecraft operations, piloted and robotic spacecraft, spacecraft systems, NASA cost estimating, and federal procurement and acquisition processes (see Appendix B). The committee met four times, including a meeting in Washington, D.C., with extensive briefings from NASA and a meeting at the Jet Propulsion Laboratory in Pasadena, California, which included discussions with staff from the Applied Physics Laboratory of Johns Hopkins University, the Jet Propulsion Laboratory, NASA Goddard Space Flight Center, the U.S. Air Force, and industry (Ball Aerospace, Lockheed Martin, and Northrop Grumman). The findings and recommendations contained in this report are based as much on the experience and discernment of the individual committee members as on the contents of the earlier studies and other information collected and reviewed by the committee. Large cost growth is a concern for Earth and space science missions, and it can be a concern for other mis - sions as well. If the cost growth is large enough, it can create liquidity problems for NASA’s Science Mission Directorate that in turn cause cost profile changes and development delays that amplify the overall cost growth for other concurrent and/or pending missions. Addressing cost growth through the allocation of artificially high reserves is an inefficient use of resources because it unnecessarily diminishes the portfolio of planned flights. The most efficient use of resources is to establish realistic budgets and reserves and effective management processes that maximize the likelihood that mission costs will not exceed reserves. NASA is already taking action to reduce cost growth; additional steps, as recommended herein, will help improve NASA’s mission planning process and achieve the goal of ensuring frequent mission opportunities for NASA Earth and space science.

OCR for page R1
Acknowledgment of Reviewers This report has been reviewed in draft form by individuals chosen for their diverse perspectives and technical expertise, in accordance with procedures approved by the Report Review Committee of the National Research Council (NRC). The purpose of this independent review is to provide candid and critical comments that will assist the institution in making its published report as sound as possible and to ensure that the report meets institutional standards for objectivity, evidence, and responsiveness to the study charge. The review comments and draft manuscript remain confidential to protect the integrity of the deliberative process. We wish to thank the following individuals for their review of this report: James G. Anderson, Harvard University, Steven J. Battel, Battel Engineering, David A. Bearden, The Aerospace Corporation, Dale Jorgenson, Harvard University, Cato T. Laurencin, University of Connecticut, Marcia J. Rieke, University of Arizona, Christopher Russell, University of California, Los Angeles, James M. Russell III, Hampton University, and Gerald Joseph Wasserburg, California Institute of Technology (professor emeritus). Although the reviewers listed above have provided many constructive comments and suggestions, they were not asked to endorse the conclusions or recommendations, nor did they see the final draft of the report before its release. The review of this report was overseen by W. Carl Lineberger, University of Colorado, Boulder, and Edward F. Crawley, Massachusetts Institute of Technology. Appointed by the NRC, they were responsible for making certain that an independent examination of this report was carried out in accordance with institutional procedures and that all review comments were carefully considered. Responsibility for the final content of this report rests entirely with the authoring committee and the institution. ix

OCR for page R1

OCR for page R1
Contents SUMMARY 1 1 SIZE AND HISTORIC CAUSES OF COST GROWTH 8 Study Background, 8 Announcement of Opportunity and Directed Missions, 9 Size of Cost Growth, 10 Causes of Cost Growth, 25 Differences Between Earth and Space Science Missions, 28 2 KEY PROBLEMS AND SOLUTIONS 30 Cost Realism, 30 Development Process, 33 Comprehensive, Integrated Strategy for Cost and Schedule Control, 40 REFERENCES 44 APPENDIXES A Statement of Task and Supporting Documents 49 B Biographies of Committee Members and Staff 53 C Findings and Recommendations from Primary References 58 D Acronyms and Abbreviations 62 xi

OCR for page R1