FIGURE 6.6 Magnified view of solar convective and magnetic structures. Left: Computer simulation of convection on the solar surface, together with emergent magnetic fields (twisted structure surrounding each granule). Right: Adaptive optics image of solar convection using the National Solar Observatory’s Dunn Solar telescope. White threads map out the emergent magnetic field surrounding each granule. ATST will have sufficient spatial resolution to quantitatively test these simulations against a statistically significant sample of solar data. SOURCE: Left—A. Vögler, S. Shelyag, M. Schüssler, F. Cattaneo, T. Emonet, and T. Linde, Simulations of magneto-convection in the solar photosphere, Astronomy and Astrophysics 429:335-351, 2005, © ESO, reproduced with permission. Right—Thomas Rimmele, National Solar Observatory.

FIGURE 6.6 Magnified view of solar convective and magnetic structures. Left: Computer simulation of convection on the solar surface, together with emergent magnetic fields (twisted structure surrounding each granule). Right: Adaptive optics image of solar convection using the National Solar Observatory’s Dunn Solar telescope. White threads map out the emergent magnetic field surrounding each granule. ATST will have sufficient spatial resolution to quantitatively test these simulations against a statistically significant sample of solar data. SOURCE: Left—A. Vögler, S. Shelyag, M. Schüssler, F. Cattaneo, T. Emonet, and T. Linde, Simulations of magneto-convection in the solar photosphere, Astronomy and Astrophysics 429:335-351, 2005, © ESO, reproduced with permission. Right—Thomas Rimmele, National Solar Observatory.

It will allow study of intense solar magnetism on the fine and complex scales that are likely to be present in nearly all stars, but which can finally be resolved with the 0.05-arcsecond spatial resolution that ATST will provide. NSF-AST also operates the National Solar Observatory (NSO) and its suite of smaller solar telescopes located at multiple sites.

Summarizing the activity scale and the frequency between the appearance of new flagship capabilities among NSF-AST facilities, during the 1990s the optical Gemini facilities were built, during the 2000s the Expanded Very Large Array and the ALMA radio facilities were constructed with ALMA slated for completion early next decade, and the 2010s will witness construction and operation of the solar facility ATST. Although construction money has come recently from the NSF MREFC line, operations for and development of these new flagships fall to NSF-AST—as do these costs for the existing optical, radio, and solar facilities mentioned above. The increasing scale and complexity of astronomical machinery brings increasing operations and development needs.

Within NSF-AST, resource allocations are approximately 56 percent for current facility operations, 10 percent for instrumentation, and 7 percent for future facili-



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement