to the survey’s committee’s proposed science program include understanding the history of the intergalactic medium and its cycling in and out of galaxies as well as the evolution of normal stars and galaxies.

Key advances could be made with a telescope with a 4-meter-diameter aperture with large field of view and fitted with high-efficiency UV and optical cameras/spectrographs operating at shorter wavelengths than HST. This is a compelling vision that requires further technology development. The committee highly recommends a modest program of technology development to begin mission trade-off studies, in particular those contrasting coronagraph and star-shade approaches, and to invest in essential technologies such as detectors, coatings, and optics, to prepare for a mission to be considered by the 2020 decadal survey. A notional budget of $40 million for the decade is recommended.

Intermediate Technology Development

As described in Chapter 5, a technology development gap has emerged between “Blue Skies” investigations and mission-specific development. The gap is formally associated with NASA’s technology readiness levels 3 through 5. Research and analysis (R&A) funding in this program has fallen in recent years. The committee recommends that funding for such medium-term technology development be augmented at the level of $2 million per year starting early in the decade, ramping up to an augmentation of $15 million per year by 2021.

Laboratory Astrophysics

As described in Chapter 5, support and infrastructure for laboratory astrophysics are eroding both in the National Laboratories and in universities. Yet the current Herschel mission, the next decade’s JWST and ALMA, and the future IXO will provide unprecedented spectroscopic sensitivity and resolution, enabling new quantitative diagnostics of the interstellar medium, star-forming regions, and hot plasmas in a wide variety of astrophysical contexts. With these improvements in spectroscopic capabilities in the submillimeter, infrared, and X-ray regions, extracting quantitative information will in many cases become limited by available knowledge of atomic and molecular transition data and cross sections. Further, detailed understanding of magnetized plasmas, the formation of molecules, and complex chemical reactions at a level that can only be obtained experimentally is of central importance to interpreting data from these missions.

It is recommended that NASA, in coordination with DOE, assess the level of funding available for laboratory astrophysics through the APRA program relative to the requirements of its current and future spectroscopic missions. Funding through APRA that is aimed at mission-enabling laboratory astrophysics should be



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement