– 1 –
INTRODUCTION

The mission of the National Geospatial-Intelligence Agency (NGA) is to provide timely, relevant, and accurate imagery, imagery intelligence, and geospatial information—collectively known as geospatial intelligence—in support of national security. To help carry out its mission, NGA sponsors research aimed at building the scientific foundation for geospatial intelligence and reinforcing the academic base, which provides new approaches to solving difficult analytical problems and also trains the next generation of NGA analysts.


Historically, NGA has supported research in five core areas:

  • photogrammetry and geomatics

  • remote sensing and imagery science

  • geodesy and geophysics

  • cartographic science

  • geographic information systems (GIS) and geospatial analysis

Some of these areas have been used for defense and intelligence purposes for decades and even centuries (Box 1.1) and ongoing technological and scientific advances continue to make them useful today. For example, digital photogrammetry and digital imaging have completely replaced and substantially improved upon hardcopy photography and mechanical image rectification. Other recent advances that could improve geospatial intelligence draw on disciplines and approaches not traditionally supported by NGA. For example, efforts to wage a counterinsurgency in Afghanistan have highlighted the need for intelligence that integrates characteristics of the physical environment with information on the people, including the local economics, identity of landowners, and incentives for obtaining cooperation from powerbrokers and villagers (Flynn et al., 2010). This evolution of disciplines and new approaches for producing geospatial intelligence also affects the future workforce available to NGA.

Within this context, H. Gregory Smith, NGA Chief Scientist, asked the National Research Council to convene a workshop to explore the evolution of the five core areas and to identify emerging disciplines that may improve the quality of geospatial intelligence over the next fifteen years. This report summarizes the discussions at the workshop.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 7
–1– INTRODUCTION The mission of the National Geospatial-Intelligence Agency (NGA) is to provide timely, relevant, and accurate imagery, imagery intelligence, and geospatial information—collectively known as geospatial intelligence—in support of national security. To help carry out its mission, NGA sponsors research aimed at building the scientific foundation for geospatial intelligence and reinforcing the academic base, which provides new approaches to solving difficult analytical problems and also trains the next generation of NGA analysts. Historically, NGA has supported research in five core areas: photogrammetry and geomatics remote sensing and imagery science geodesy and geophysics cartographic science geographic information systems (GIS) and geospatial analysis Some of these areas have been used for defense and intelligence purposes for decades and even centuries (Box 1.1) and ongoing technological and scientific advances continue to make them useful today. For example, digital photogrammetry and digital imaging have completely replaced and substantially improved upon hardcopy photography and mechanical image rectification. Other recent advances that could improve geospatial intelligence draw on disciplines and approaches not traditionally supported by NGA. For example, efforts to wage a counterinsurgency in Afghanistan have highlighted the need for intelligence that integrates characteristics of the physical environment with information on the people, including the local economics, identity of landowners, and incentives for obtaining cooperation from powerbrokers and villagers (Flynn et al., 2010). This evolution of disciplines and new approaches for producing geospatial intelligence also affects the future workforce available to NGA. Within this context, H. Gregory Smith, NGA Chief Scientist, asked the National Research Council to convene a workshop to explore the evolution of the five core areas and to identify emerging disciplines that may improve the quality of geospatial intelligence over the next fifteen years. This report summarizes the discussions at the workshop. 7

OCR for page 7
8 NEW RESEARCH DIRECTIONS FOR NGA BOX 1.1 Milestones in NGA Core Areas for Defense and Intelligence Purposes Year Event 1813 Congress authorizes the Topographical Engineers to conduct surveys to facilitate the safe movement of troops for the War of 1812 1862 Observation balloons are used to take aerial observations during Civil War campaigns in Virginia 1917 Aerial photography becomes a major contributor to battlefield intelligence during World War I 1922 Sounding data are collected from a Navy ship for the first modern bathymetric chart 1941 Second World War aviation enables photogrammetry, photo interpretation, and geodesy to replace field surveys 1953 Project U.S. Magnet is created to measure magnetic variations around the Earth; the program continued until 1994 1956 U-2 aircraft carry out manned reconnaissance missions, becoming the primary source for intelligence gathering over the Soviet Union and other denied areas 1960 Successful return of imagery from CORONA, the first photoreconnaissance satellite system in the world 1960 Development of a World Geodetic System (WGS 60), which defined a best-fitting ellipsoid and an Earth-centered orientation system and formed the basis of current global positioning systems 1966 Launch of the Geodetic Earth Orbiting Satellite, the first satellite for geodetic studies 1973 Start of the Special Mission Tracking Program to obtain atmospheric observational data in support of scientific space operations 1974 First electronic dissemination of near-real time, near-original quality access to national imagery to assist in rapid targeting and assessment of strategic threats 1987 The Navigation Satellite Timing and Ranging (NAVSTAR) Global Positioning System (GPS) becomes operational, providing accurate and continuous data on position, velocity, and time under all weather conditions 1995 The Predator unmanned aerial vehicle (UAV) becomes operational 1996 Creation of Earth Gravity Model 96, improving accuracy in GPS readings, determination of satellite orbits, and geodetic satellite measurements 2000 The Shuttle Radar Topography Mission (SRTM) begins to acquire elevation data over about 80 percent of the Earth’s surface using interferometric synthetic aperture radar 2006 Different versions of the RQ-4 Global Hawk, a remotely piloted aircraft designed for reconnaissance become operational in service. ________ SOURCE: NGA historical reference chronology, . NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY NGA is one of sixteen federal agencies responsible for national intelligence. Its focus is the exploitation and analysis of imagery and geospatial information to describe, assess, and visually depict physical features and geographically referenced activities on the Earth. Issues that have a component of “where” or “when” potentially fall under the purview of NGA. Most of NGA’s efforts are devoted to the provision of data, intelligence and services to users now and in the near future. Positioning the NGA for future capabilities is the responsibility of the InnoVision Directorate, which analyzes intelligence trends, technological advances, and emerging approaches to forecast possible environments and identify future needs. Demands for

OCR for page 7
INTRODUCTION 9 new kinds of information and the development of new capabilities for data collection have led to explosive growth in the quantity, diversity, and complexity of information, and placed new and more exacting requirements on information analysts. Future global developments—such as climate change, water scarcity, the spread of infectious disease, global financial and economic activities, warfare, terrorism, and nuclear proliferation—will further increase the complexity of geospatial intelligence by requiring the collection and analysis of new data on environmental and human factors and how they interconnect. Future challenges facing NGA are both computational and scientific. A 2006 National Research Council (NRC) report focused on the former, identifying twelve “hard problems” in data collection, processing, and integration; speed of analysis; use of imagery; and data sharing that must be surmounted to improve geospatial intelligence (NRC, 2006). This workshop report discusses the science disciplines that form the foundation for solving these and other geospatial intelligence problems. OVERVIEW OF THE WORKSHOP Planning Committee An NRC committee was established to organize the workshop and write a report. Committee members were selected for their expertise in the earth, geospatial, and computational sciences that are or are likely to become important to NGA, or for their experience with the intelligence community. The committee met in February 2010 to plan the workshop and again immediately following the workshop to begin writing the report. The committee was asked to look ahead fifteen years without regard to NGA’s immediate research needs, which are partially classified. In addition to the five core areas identified by NGA, the committee selected five cross-cutting themes that are likely to become increasingly important for GEOINT: beyond fusion, forecasting, human terrain, participatory sensing, and visual analytics. These were chosen based on their linkages with the core areas, on their utility in addressing the hard problems in geospatial science identified in the previous NRC report (NRC, 2006), and on the general needs of the intelligence community, as understood by the committee. The research areas discussed at the workshop are defined in Box S.1. Structure of the Workshop The workshop was held in Washington, D.C., on May 17-19, 2010. The first day of the workshop focused on the NGA’s five core areas. White papers written for the workshop traced the evolution of the core areas over the past few decades. Workshop presentations and working group discussions looked forward, focusing on new opportunities and challenges in these areas for NGA. On the second day, workshop participants discussed the five cross-cutting themes. Background journal articles and presentations provided an overview of the state of the science, and the working group discussions focused on the usefulness of the cross-cutting themes for geospatial intelligence. On the third day of the workshop, participants focused the results of the earlier discussions into a short list of promising research directions for the NGA. Some

OCR for page 7
10 NEW RESEARCH DIRECTIONS FOR NGA participants also identified potential implications of implementing these research directions for the future workforce and other aspects of the scientific infrastructure. None of the material discussed or presented at the workshop was classified. Workshop participants included twenty-nine researchers drawn from a wide range of disciplines, with special emphasis on the core areas and cross-cutting issues. In addition, five observers from NGA and other parts of the intelligence community participated in the discussions. Altogether, forty-eight participants attended the workshop, including NRC staff. ORGANIZATION OF THE REPORT This report is the committee’s summary of what transpired at the workshop. It reflects only those topics emphasized during workshop presentations, discussions, and background papers, and is not intended as a comprehensive summary of all topics and issues relevant to the research underlying the production of geospatial intelligence. Moreover, this report does not contain any consensus recommendations or conclusions. The documented observations or views contained in this report are those of individual participants or groups of participants and do not necessarily represent the consensus of the workshop participants or the committee. Chapter 2 summarizes the presentations and working group results on NGA’s core areas and the cross-cutting themes, respectively. Chapter 3 presents the short list of new research directions selected by workshop participants and discusses some implications of implementing them on the research infrastructure. Biographical sketches of committee members are given in Appendix A. Appendix B lists the white papers written for the workshop as well as the key note talks presented at the workshop. The workshop participants and agenda are given in Appendixes C and D, respectively. Additional notes from the workshop breakout sessions are provided in Appendix E.